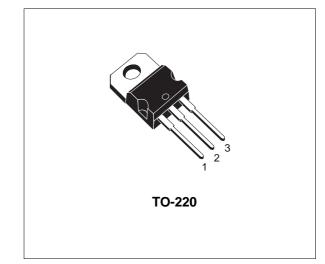
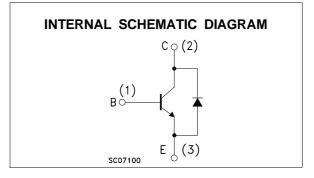


BUL49D

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR


- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR
- RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- HIGH RUGGEDNESS


APPLICATIONS

- ELECTRONIC TRANSFORMERS FOR HALOGEN LAMPS
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

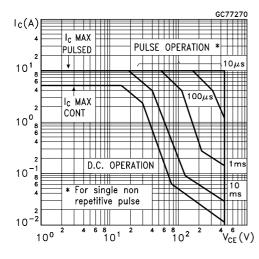
DESCRIPTION

The BUL49D is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability. The BUL49D is designed for use in electronic transformers for halogen lamps.

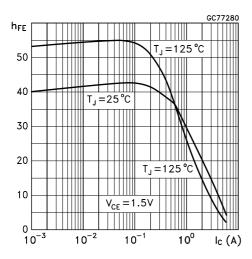
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	850	V
Vceo	Collector-Emitter Voltage $(I_B = 0)$	450	V
V _{EBO}	Emitter-Base Voltage ($I_C = 0$, $I_B < 2.5$ A, $t_p < 10\mu$ s, $T_J < 150$ °C)	BV _{EBO}	V
lc	Collector Current	5	A
I _{CM}	Collector Peak Current (t _p < 5 ms)	10	A
Ι _Β	Base Current	2	A
I _{BM}	Base Peak Current (t _p < 5 ms)	4	A
P _{tot}	Total Dissipation at Tc = 25 °C	80	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

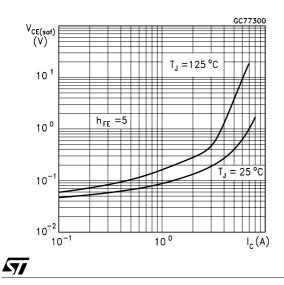
THERMAL DATA

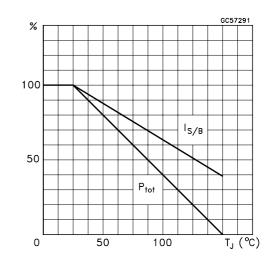

R _{thj-ca}	se Thermal Resistance Junction-Case	Мах	1.56	°C/W
R _{thj-an}	hb Thermal Resistance Junction-Ambient	Max	62.5	°C/W

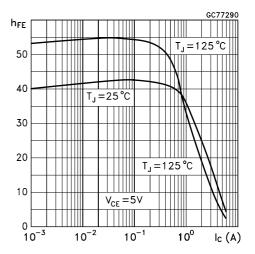
ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

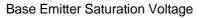

Symbol	Parameter	Test Conditions			Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 850 V V _{CE} = 850 V	T _j = 125 ^o C			100 500	μΑ μΑ
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	V _{EB} = 9 V				100	μA
BV _{EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 10mA		10		18	V
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 10 mA	L = 25 mH	450			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{C} = 1 A$ $I_{C} = 2 A$ $I_{C} = 4 A$	I _B = 0.2 A I _B = 0.4 A I _B = 0.8 A		0.1	0.3 0.6 1.2	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{C} = 1 A$ $I_{C} = 4 A$	I _B = 0.2 A I _B = 0.8 A			1.0 1.3	V V
h _{FE} *	DC Current Gain	I _C = 10 mA I _C = 0.5 A I _C = 7 A	V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 10 V	10 4		60 10	
V _{CEW}	Maximum Collector Emitter Voltage Without Snubber	I _C = 8 A V _{BB} = -2.5 V t _p = 10 μs	R _{BB} = 0 Ω L = 50μH	450			V
t _s t _f	RESISTIVE LOAD Storage Time Fall Time	$I_{C} = 2 A$ $I_{B(on)} = I_{B(off)} = 0$		2		3 0.8	μs μs
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_{C} = 4 A$ $V_{BE(off)} = -5 V$ $V_{CL} = 300 V$	$I_{B(on)} = 0.8 \text{ A}$ $R_{BB} = 0 \Omega$ $L = 1 \text{ mH}$		0.6 50	1.3 100	μs ns
Vf	Diode Forward Voltage	I _C = 3 A				1.5	V

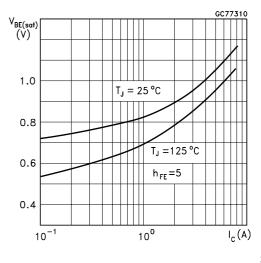
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

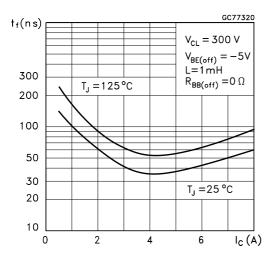

Safe Operating Areas

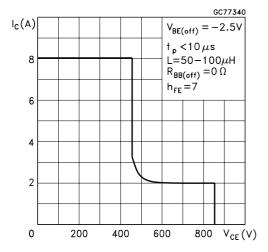

DC Current Gain

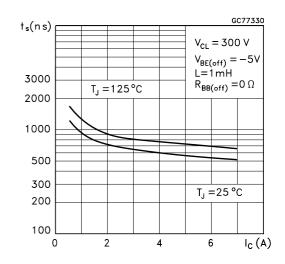

Collector Emitter Saturation Voltage




Derating Curve

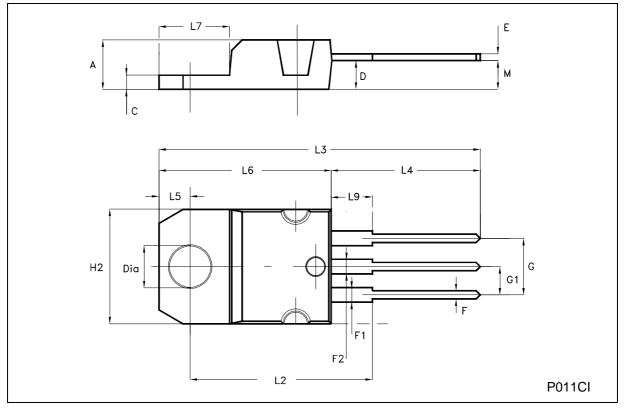

DC Current Gain




Inductive Fall Time

Reverse Biased SOA

Inductive Storage Time



57

4/6

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		2.70	0.094		0.106
H2	10.00		10.40	0.394		0.409
L2		16.40			0.645	
L4	13.00		14.00	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
Μ		2.60			0.102	

\$77

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57