VN920PEP

SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY

TARGET SPECIFICATION

TYPE	$\mathbf{R}_{\text {DS(on) }}$	$\mathbf{l}_{\text {OUT }}$	$\mathbf{V}_{\mathbf{C C}}$
VN920PEP	$15 \mathrm{~m} \Omega$	30 A	36 V

- CMOS COMPATIBLE INPUT
- PROPORTIONAL LOAD CURRENT SENSE
- SHORTED LOAD PROTECTION
- UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN
- OVERVOLTAGE CLAMP
- THERMAL SHUTDOWN
- CURRENT LIMITATION
- PROTECTION AGAINST LOSS OF GROUND AND LOSS V_{CC}
- VERY LOW STAND-BY POWER DISSIPATION
- REVERSE BATTERY PROTECTION (*)

DESCRIPTION

The VN920PEP is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V_{CC} pin voltage clamp protects the device against low energy

spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device integrates an analog current sense output which delivers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection.

BLOCK DIAGRAM

(*) See application schematic at page 8
March 2004 - Revision 1.5 (Working document)
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	41	V
- V_{CC}	Reverse DC Supply Voltage	-0.3	V
- I ${ }_{\text {GND }}$	DC Reverse Ground Pin Current	- 200	mA
Iout	DC Output Current	Internally Limited	A
- Iout	Reverse DC Output Current	-40	A
IN	DC Input Current	+/-10	mA
$\mathrm{V}_{\text {CSENSE }}$	Current Sense Maximum Voltage	$\begin{gathered} -3 \\ +15 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {ESD }}$	Electrostatic Discharge (Human Body Model: $\mathrm{R}=1.5 \mathrm{~K} \Omega$; $\mathrm{C}=100 \mathrm{pF}$) - INPUT - CURRENT SENSE - OUTPUT - V_{CC}	$\begin{aligned} & 4000 \\ & 2000 \\ & 5000 \\ & 5000 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{P}_{\text {tot }}$	Power Dissipation $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	96	W
T_{j}	Junction Operating Temperature	Internally limited	${ }^{\circ} \mathrm{C}$
T_{c}	Case Operating Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM (TOP VIEW)

CURRENT AND VOLTAGE CONVENTIONS

THERMAL DATA

Symbol	Parameter	Value	Unit	
$\mathrm{R}_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	1.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-amb }}$	Thermal Resistance Junction-ambient	Max	$60\left(^{*}\right)$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(*) When mounted on a standard single-sided FR-4 board with $1 \mathrm{~cm}^{2}$ of Cu (at least $35 \mu \mathrm{~m}$ thick).
ELECTRICAL CHARACTERISTICS $\left(8 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<36 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{j}}<150^{\circ} \mathrm{C}\right.$ unless otherwise specified) POWER

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$V_{C C}$	Operating Supply Voltage		5.5	13	36	V
$V_{\text {USD }}$	Undervoltage Shut-down		3	4	5.5	V
$\mathrm{V}_{\text {OV }}$	Overvoltage Shut-down		36			V
R_{ON}	On State Resistance	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=10 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {OUT }}=10 \mathrm{~A} \\ & \mathrm{I}_{\text {OUT }}=3 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 15 \\ & 30 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{m} \Omega \\ \mathrm{~m} \Omega \\ \mathrm{~m} \Omega \end{gathered}$
$\mathrm{V}_{\text {clamp }}$	Clamp Voltage	$\mathrm{I}_{\mathrm{CC}}=20 \mathrm{~mA}$ (See note 1)	41	48	55	V
Is	Supply Current	$\begin{aligned} & \text { Off State } ; \mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \text { Off State } ; \mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \text { On State } ; \mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OUT}}=0 ; \\ & \mathrm{R}_{\text {SENSE }}=3.9 \mathrm{~K} \Omega \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{gathered} 25 \\ 20 \\ 5 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
$\mathrm{L}_{\text {(0ff1) }}$	Off State Output Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V}$	0		50	$\mu \mathrm{A}$
$L_{\text {L(off2) }}$	Off State Output Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.5 \mathrm{~V}$	-75		0	$\mu \mathrm{A}$
$L_{\text {L(off3) }}$	Off State Output Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V} ; \mathrm{V}_{\text {CC }}=13 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			5	$\mu \mathrm{A}$
L(0ff4)	Off State Output Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			3	$\mu \mathrm{A}$

SWITCHING ($\left.\mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V}\right)$

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on Delay Time	$\mathrm{R}_{\mathrm{L}}=1.3 \Omega$ (see figure 2)		50		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d}(\mathrm{off})}$	Turn-off Delay Time	$\mathrm{R}_{\mathrm{L}}=1.3 \Omega$ (see figure 2)		50		$\mu \mathrm{s}$
$\mathrm{dV}_{\text {OUT }} / \mathrm{dt}_{(\text {(on) }}$	Turn-on Voltage Slope	$\mathrm{R}_{\mathrm{L}}=1.3 \Omega$ (see figure 2)		See relative diagram		V/us
$\mathrm{dV}_{\text {OUT }} / \mathrm{dt}_{\text {(off) }}$	Turn-off Voltage Slope	$\mathrm{R}_{\mathrm{L}}=1.3 \Omega$ (see figure 2)		See relative diagram		V/us

LOGIC INPUT

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{IL}	Input Low Level				1.25	V
I_{IL}	Low Level Input Current	$\mathrm{V}_{\mathrm{IN}}=1.25 \mathrm{~V}$	1			$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Level		3.25			V
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{IN}}=3.25 \mathrm{~V}$			10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{I}(\text { hyst })}$	Input Hysteresis Voltage		0.5			V
$\mathrm{~V}_{\mathrm{ICL}}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$				
	$\mathrm{I}_{\mathrm{I}}=-1 \mathrm{~mA}$	6	6.8	8	V	

Note 1: $\mathrm{V}_{\text {clamp }}$ and V_{OV} are correlated. Typical difference is 5 V .

ELECTRICAL CHARACTERISTICS (continued)
CURRENT SENSE ($9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16 \mathrm{~V}$) (See Fig. 1)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
K_{1}	lout/ISENSE	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=1 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0.5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} . . .150^{\circ} \mathrm{C} \end{aligned}$	3300	4400	6000	
$\mathrm{dK}_{1} / \mathrm{K}_{1}$	Current Sense Ratio Drift	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=1 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0.5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C} \end{aligned}$	-10		+10	\%
K_{2}	lout/ISENSE	$\begin{aligned} & I_{\text {OUT }}=10 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \ldots . .150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 4200 \\ & 4400 \end{aligned}$	$\begin{aligned} & 4900 \\ & 4900 \end{aligned}$	$\begin{aligned} & 6000 \\ & 5750 \end{aligned}$	
$\mathrm{dK}_{2} / \mathrm{K}_{2}$	Current Sense Ratio Drift	$\begin{aligned} & \text { lout }=10 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C} \end{aligned}$	-8		+8	\%
K_{3}	$\mathrm{I}_{\text {OUT }} / \mathrm{I}_{\text {SENSE }}$	$\begin{aligned} & \text { louT }=30 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \ldots 150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 4200 \\ & 4400 \end{aligned}$	$\begin{aligned} & 4900 \\ & 4900 \end{aligned}$	$\begin{aligned} & 5500 \\ & 5250 \end{aligned}$	
$\mathrm{dK}_{3} / \mathrm{K}_{3}$	Current Sense Ratio Drift	$\begin{aligned} & \text { IOUT }=30 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=4 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C} \end{aligned}$	-6		+6	\%
Isenseo	Analog Sense Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \ldots 16 \mathrm{~V} ; \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~A} ; \mathrm{V}_{\text {SENSE }}=0 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C} \end{aligned}$	0		10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SENSE }}$	Max Analog Sense Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OUT}}=5 \mathrm{~A} ; \mathrm{R}_{\mathrm{SENSE}}=10 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}>8 \mathrm{~V} ; \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~A} ; \mathrm{R}_{\mathrm{SENSE}}=10 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {SENSEH }}$	Sense Voltage in Overtemperature conditions	$\mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V} ; \mathrm{R}_{\text {SENSE }}=3.9 \mathrm{~K} \Omega$		5.5		V
Rvsenseh	Analog sense output impedance in overtemperature condition	$\mathrm{V}_{C C}=13 \mathrm{~V} ; \mathrm{Tj}>\mathrm{T}_{\text {TSD }}$; Output Open		400		Ω
t DSENSE	Current sense delay response	to $90 \% I_{\text {SENSE }}$ (see note 2)			500	$\mu \mathrm{s}$

PROTECTIONS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {TSD }}$	Shut-down Temperature		150	175	200	${ }^{\circ} \mathrm{C}$
T_{R}	Reset Temperature		135			${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {hyst }}$	Thermal Hysteresis		7	15		${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {lim }}$	DC Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V}$ $5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<36 \mathrm{~V}$	30	45	75	A
$\mathrm{~V}_{\text {demag }}$	Turn-off Output Clamp Voltage	$\mathrm{I}_{\mathrm{OUT}}=2 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{L}=6 \mathrm{mH}$	$\mathrm{V}_{\mathrm{CC}}-41$	$\mathrm{~V}_{\mathrm{CC}}-48$	$\mathrm{~V}_{\mathrm{CC}}-55$	V
$\mathrm{~V}_{\mathrm{ON}}$	Output Limitation	$\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \ldots .+150^{\circ} \mathrm{C}$		50		mV

VCC - OUTPUT DIODE

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{F}	Forward on Voltage	$-\mathrm{I}_{\mathrm{OUT}}=5.5 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$			0.7	V

Note 2: current sense signal delay after positive input slope
Note: Sense pin doesn't have to be left floating.

Figure 1: lout/l SENSE versus IOUT

Figure 2: Switching Characteristics (Resistive load $\mathrm{R}_{\mathrm{L}}=1.3 \Omega$)

TRUTH TABLE

CONDITIONS	INPUT	OUTPUT	SENSE
Normal operation	L	L	0
	H	H	Nominal
Overtemperature	L	L	0
	H	L	$\mathrm{V}_{\text {SENSEH }}$
Undervoltage	L	L	0
	H	L	0
Overvoltage	L	L	0
	H	L	0
Short circuit to GND	L	L	0
	H	L	$\left(\mathrm{T}_{\mathrm{j}}<\mathrm{T}_{\text {TSD }}\right) 0$
Short circuit to $\mathrm{V}_{\text {CC }}$	H	L	$\left(\mathrm{T}_{\mathrm{j}}>\mathrm{T}_{\text {TSD }}\right) \mathrm{V}_{\text {SENSEH }}$
Negative output voltage clamp	L	H	0

ELECTRICAL TRANSIENT REQUIREMENTS

ISO T/R 7637/1 Test Pulse	TEST LEVELS				
		II	III	IV	Delays and Impedance
1	-25 V	-50 V	-75 V	-100 V	$2 \mathrm{~ms} 10 \Omega$
2	+25 V	+50 V	+75 V	+100 V	$0.2 \mathrm{~ms} 10 \Omega$
3 a	-25 V	-50 V	-100 V	-150 V	$0.1 \mu \mathrm{~s} 50 \Omega$
3 b	+25 V	+50 V	+75 V	+100 V	$0.1 \mu \mathrm{~s} 50 \Omega$
4	-4 V	-5 V	-6 V	-7 V	$100 \mathrm{~ms}, 0.01 \Omega$
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	$400 \mathrm{~ms}, 2 \Omega$

$\begin{aligned} & \text { ISO T/R 7637/1 } \\ & \text { Test Pulse } \end{aligned}$	TEST LEVELS RESULTS			
	I	II	III	IV
1	C	C	C	C
2	C	C	C	C
3 a	C	C	C	C
3b	C	C	C	C
4	C	C	C	C
5	C	E	E	E

CLASS	CONTENTS
C	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

Figure 3: Waveforms

APPLICATION SCHEMATIC

GND PROTECTION NETWORK AGAINST REVERSE BATTERY

Solution 1: Resistor in the ground line ($\mathrm{R}_{\mathrm{GND}}$ only). This can be used with any type of load.
The following is an indication on how to dimension the $\mathrm{R}_{\mathrm{GND}}$ resistor.

1) $R_{G N D} \leq 600 \mathrm{mV} /\left(I_{\text {S(on) max }}\right)$.
2) $\mathrm{R}_{\mathrm{GND}} \geq\left(-\mathrm{V}_{\mathrm{CC}}\right) /\left(-\mathrm{I}_{\mathrm{GND}}\right)$
where $-I_{G N D}$ is the $D C$ reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.
Power Dissipation in $\mathrm{R}_{\mathrm{GND}}$ (when $\mathrm{V}_{\mathrm{CC}}<0$: during reverse battery situations) is:
$\mathrm{P}_{\mathrm{D}}=\left(-\mathrm{V}_{\mathrm{CC}}\right)^{2} / \mathrm{R}_{\mathrm{GND}}$
This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where $I_{\text {S(on)max }}$ becomes the sum of the maximum on-state currents of the different devices.
Please note that if the microprocessor ground is not common with the device ground then the $\mathrm{R}_{\mathrm{GND}}$ will produce a shift ($\mathrm{I}_{\text {(on)max }}{ }^{*} \mathrm{R}_{\mathrm{GND}}$) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same $\mathrm{R}_{\mathrm{GND}}$.
If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode ($\mathrm{D}_{\mathrm{GND}}$) in the ground line.
A resistor ($\mathrm{R}_{\mathrm{GND}}=1 \mathrm{k} \Omega$) should be inserted in parallel to $\mathrm{D}_{\mathrm{GND}}$ if the device will be driving an inductive load.

This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift ($\simeq 600 \mathrm{mV}$) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.
Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin.

LOAD DUMP PROTECTION

$\mathrm{D}_{\text {Id }}$ is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds $V_{C C}$ max $D C$ rating. The same applies if the device will be subject to transients on the $V_{c c}$ line that are greater than the ones shown in the ISO T/R 7637/1 table.

μ C I/Os PROTECTION:

If a ground protection network is used and negative transients are present on the $V_{C C}$ line, the control pins will be pulled negative. ST suggests to insert a resistor ($\mathrm{R}_{\text {prot }}$) in line to prevent the $\mu \mathrm{C}$ I/Os pins to latch-up.
The value of these resistors is a compromise between the leakage current of $\mu \mathrm{C}$ and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of $\mu \mathrm{Cl} / \mathrm{Os}$.

$$
-\mathrm{V}_{\text {CCpeak }} / I_{\text {latchup }} \leq \mathrm{R}_{\text {prot }} \leq\left(\mathrm{V}_{\mathrm{OH} \mu \mathrm{C}}-\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{GND}}\right) / \mathrm{I}_{\mathrm{IHmax}}
$$

Calculation example:
For $\mathrm{V}_{\mathrm{CC} \text { peak }}=-100 \mathrm{~V}$ and $\mathrm{I}_{\text {latchup }} \geq 20 \mathrm{~mA} ; \mathrm{V}_{\mathrm{OH} \mu \mathrm{C}} \geq 4.5 \mathrm{~V}$ $5 \mathrm{k} \Omega \leq \mathrm{R}_{\text {prot }} \leq 65 \mathrm{k} \Omega$.
Recommended $R_{\text {prot }}$ value is $10 k \Omega$.

PowerSSO-24 ${ }^{\text {TM }}$ MECHANICAL DATA

DIM.	mm.		
	MIN.	TYP	MAX.
A	1.9		2.22
A2	1.9		2.15
a1	0	0.4	0.07
b	0.34		0.46
c	0.23		0.32
D	10.2	8.8	10.4
E	7.4		7.6
e			0.8
e3			0.06
G1	10.1		10.5
H			0.4
h	0.55		0.85
L			100
N	3.9		4.3
X			6.5
Y			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
http://www.st.com

