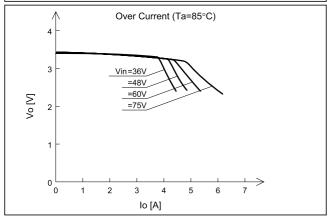
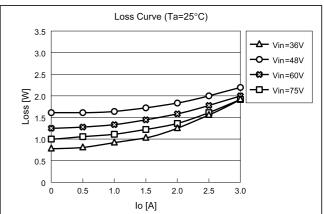
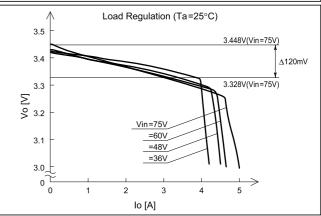
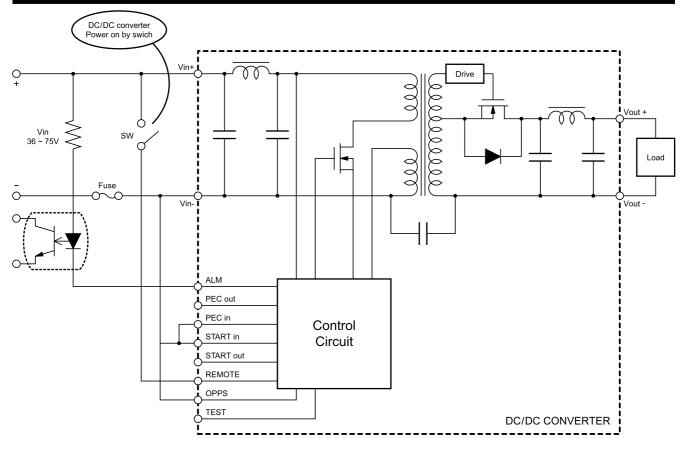

EPH3R3030


[1] Electrical Specification Output Side Ta -40~85°C Vi 36~75V


	Characteristics	Conditions	Output			l lmit	
	Characteristics	Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage Initial Setting	Ta=25°C lo	=0~3A Vi=48V	3.2	3.3	3.46	V
	Line Regulation	Io=3A Vi=3	6~75 V	_	30		mV
	Load Regulation	lo=0~3 A Vi	=48V	_	75		mV
lo	Output Current			0	_	3	А
Po Max				_	10		W
	Output Over Current Limit			3.1 —		А	
	Output Over Voltage Protection			3.96	_	4.62	V
	Output Low Voltage Protection					2.97	V
Voac	Output Ripple & Noise	Io=Io Max.	20Hz~5MHz 0.6Hz~50MHz		30	100	mV P—P
				_		80	dB <i>µ</i> V

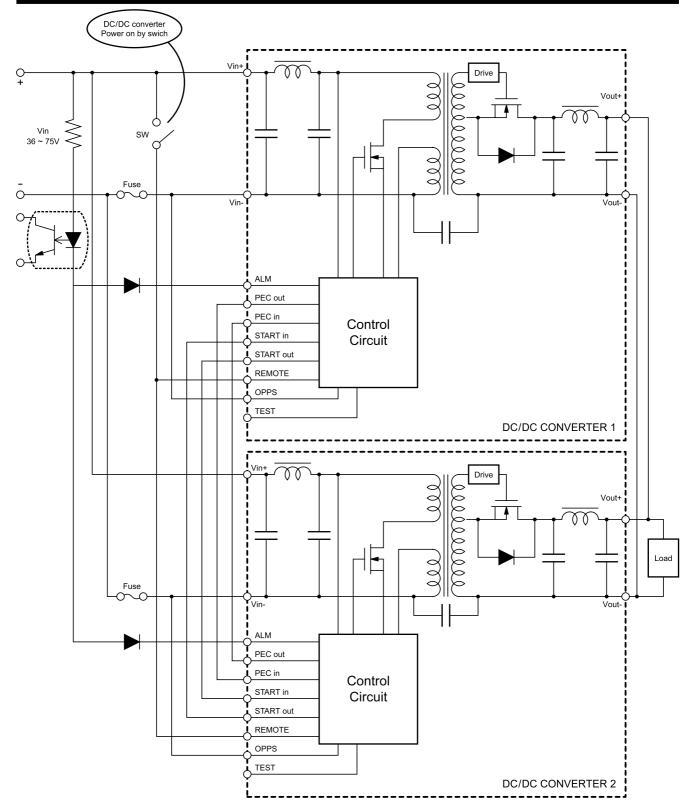

[2] Efficiency & Power Dissipation

	Characteristics	Conditions	Min.	Тур.	Max.	Unit
η	Efficiency	Io = 3 A Vi = 48 V		84		%
Pd	Power Dissipation	Io = 3 A Vi = 48 V		1.8		W



SHINDENGEN

■ *Application 1 [Single operation]*


^{*}Please connect from PECin PIN, STARTin PIN, OPPS PIN to Vin-PIN in Natural Convection.

 $[\]ast$ TEST PIN is always open.

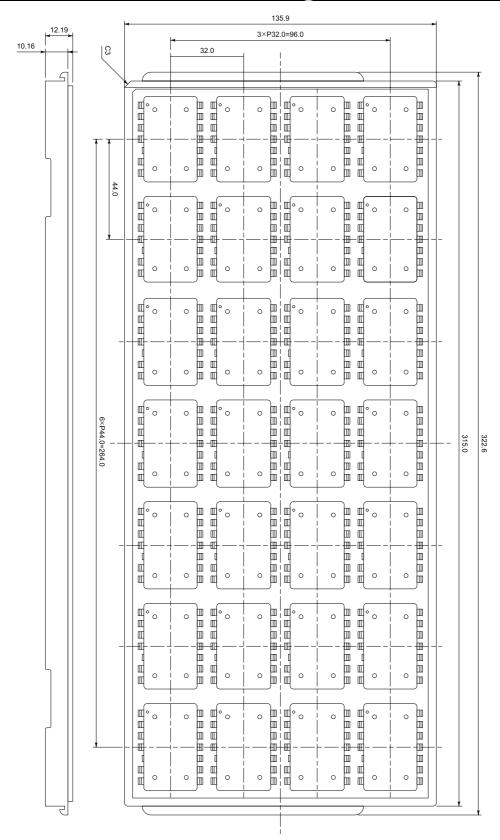
^{*}We recommend to insert fuses (2A) Vin-lines for EPH series.

SHINDENGEN

■ Application 2 [Parallel operation]

^{*}Please connect parallel for REMOTE and ALARM signals.

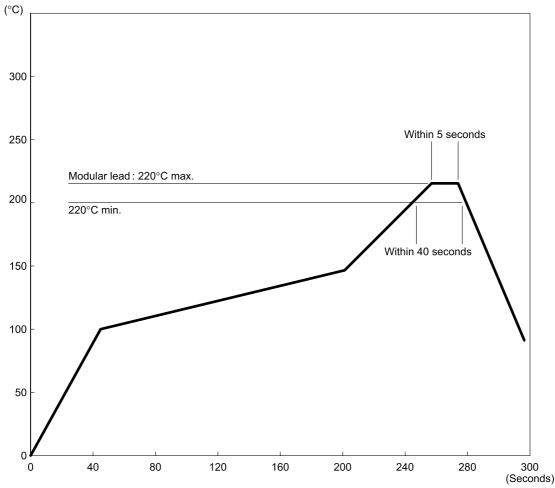
 $^{^{\}ast}\text{Please}$ connect loop line for PEC and START.


^{*}Please connect from OPPS PIN to Vin-PIN in Natural Convection.

^{*}TEST PIN is always open.

^{*}Please insert necessarily fuses (250V 2A) Vin-lines for EPH series.

Package



Notes: 1. The shape of the tray complies with JEDEC standards.

- 2. Product carrying capacity: 28 pcs./tray
- 3. Heat resistant temperature: $150\,^{\circ}\text{C}$ max. (high heat resistance type)
- 4. The following markings must be indicated on the handle:
 - 1) Company name: Shindengen 2) Package name: MSOP-14 3) Heat resistant temperature 4) Material

■ Temperature Profile

- 1) The atmospheric temperature of the modular lead should be $220\,^{\circ}\text{C}$ for no more than 5 seconds.
- 2) Refer to the graph above for an example of a recommended profile.
- 3) Precautions Concerning Heating Method Since allowing the PWB to stand at a high temperature for an extended period of time may have a detrimental effect on reliability, it is necessary to perform soldering as quickly as possible to prevent the temperature of the PWB from rising excessively. In addition, since areas of local temperature rise may occur when using a halogen lamp or infrared heater, avoid irradiating the surface of the PWB directly.