MEMORY Mobile FCRAMTM cmos

16 Mbit (1 M word × 16 bit) Mobile Phone Application Specific Memory

MB82DS01181E-70L-A

■ DESCRIPTION

MB82DS01181E is a Fast Cycle Random Access Memory (FCRAM) with asynchronous Static Random Access Memory (SRAM) interface containing 16,777,216 storages accessible in a 16-bit format. MB82DS01181E is suited for mobile applications such as Cellular Handset and PDA.

Note: FCRAM is a trademark of Fujitsu Limited, Japan.

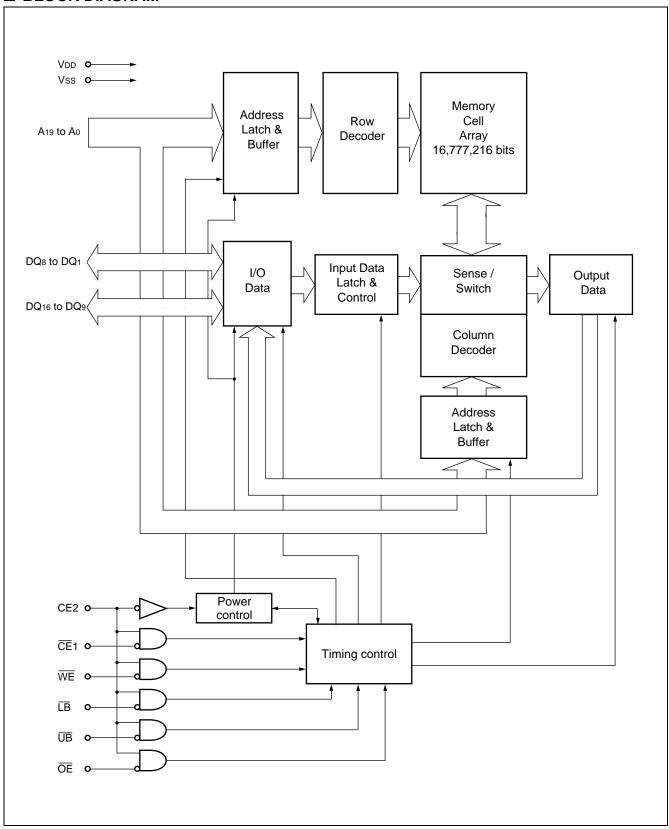
■ FEATURES

· Asynchronous SRAM Interface

• 1 M word × 16-bit Organization

• Low-voltage Operating Conditions : $V_{DD} = +1.7 \text{ V to } +1.95 \text{ V}$ • Wide Operating Temperature : $T_{A} = -30 \text{ °C to } +85 \text{ °C}$ • Read/Write Cycle Time : $t_{RC} = t_{WC} = 80 \text{ ns Min}$ • Fast Random Access Time : $t_{AA} = t_{CE} = 70 \text{ ns Max}$ • Active current : $t_{DDA1} = 20 \text{ mA Max}$ • Standby current : $t_{DDS1} = 100 \text{ } \mu\text{A Max}$ • Power down current : $t_{DDPS} = 10 \text{ } \mu\text{A Max}$

Byte Control


• Shipping Form : Wafer / Chip

■ PIN DESCRIPTION

Pin Name	Description
A ₁₉ to A ₀	Address Input
CE1	Chip Enable 1 (Low Active)
CE2	Chip Enable 2 (High Active)
WE	Write Enable (Low Active)
ŌĒ	Output Enable (Low Active)
LB	Lower Byte Control (Low Active)
ŪB	Upper Byte Control (Low Active)
DQ8 to DQ1	Lower Byte Data Input/Output
DQ ₁₆ to DQ ₉	Upper Byte Data Input/Output
V _{DD}	Power Supply
Vss	Ground

■ BLOCK DIAGRAM

■ FUNCTION TRUTH TABLE

Mode	CE2	CE1	WE	ŌĒ	LB	UB	A ₁₉ to A ₀	DQ8 to DQ1	DQ ₁₆ to DQ ₉	IDD	Data Retention
Standby (Deselect)		Н	Х	Х	Х	Х	Х	High-Z	High-Z	IDDS	
Output Disable*1			Н	Н	Х	Х	*3	High-Z	High-Z		
No Read					Н	Н	Valid	High-Z	High-Z		
Read (Upper Byte)					Н	L	Valid	High-Z	Output Valid		
Read (Lower Byte)			Н	L	L	Н	Valid	Output Valid	High-Z		
Read (Word)	Н	L			L	L	Valid	Output Valid	Output Valid	I _{DDA}	Yes
No Write					Н	Н	Valid	Invalid	Invalid		
Write (Upper Byte)					Н	L	Valid	Invalid	Input Valid		
Write (Lower Byte)			L	Н	L	Н	Valid	Input Valid	Invalid		
Write (Word)					L	L	Valid	Input Valid	Input Valid		
Power Down *2	L	Х	Х	Х	Х	Х	Х	High-Z	High-Z	IDDP	No

Note : $L = V_{IL}$, $H = V_{IH}$, X can be either V_{IL} or V_{IH} , High-Z = High impedance

^{*1 :} Should not be kept this logic condition longer than 1 μs .

^{*2 :} Power down mode can be entered from standby state and all DQ pins are in High-Z state.

^{*3 :} Can be either V_{IL} or V_{IH} but must be valid before read or write.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit	
Farameter	Symbol	Min	Max	Onit
Supply Voltage*	V _{DD}	-0.5	+3.6	V
Input Voltage*	Vin	-0.5	+3.6	V
Output voltage*	Vоит	-0.5	+3.6	V
Short Circuit Output Current	Іоит	-50	+50	mA
Storage Temperature	Тѕтс	-55	+125	°C

^{* :} All voltages are referenced to Vss = 0 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Va	Unit	
Farameter	Symbol	Min	Max	Offic
Supply Voltage *1	V _{DD}	1.7	1.95	V
Supply Voltage *1	Vss	0	0	V
High Level Input Voltage *1, *2	Vıн	$V_{DD} \times 0.8$	V _{DD} + 0.2	V
Low Level Input Voltage *1, *3	VıL	-0.3	$V_{DD} \times 0.2$	V
Ambient Temperature	TA	-30	+ 85	°C

^{*1 :} All voltages are referenced to Vss = 0 V.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

^{*2 :} Overshoot spec. (Vih (Max) = VDD + 1.0 V, pulse width $\leq 5.0 ns$)

^{*3 :} Undershoot spec. ($V_{IL (Min)} = -1.0 \text{ V}$, pulse width $\leq 5.0 \text{ ns}$)

■ PIN CAPACITANCE

 $(f = 1.0 \text{ MHz}, T_A = +25 \text{ }^{\circ}\text{C})$

Parameter	Din namo	Pin name Symbol (Value		Unit
raiailletei	Fill Hallie	Symbol	Conditions	Min	Тур	Max	Oiiit
	A ₁₉ to A ₀	C _{IN1}	$V_{IN} = 0 V$		_	5	pF
Input Capacitance	CE1, CE2, WE, OE, LB, UB	C _{IN2}	V _{IN} = 0 V	_	_	5	pF
Input/Output Capacitance	DQ ₁₆ to DQ ₁	Сю	Vio = 0 V			8	pF

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(At recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Conditions		Val	lue	Unit
Parameter	Symbol	Conditions		Min	Max	Ullit
Input Leakage Current	Iц	$V_{SS} \leq V_{IN} \leq V_{DD}$		-1.0	+1.0	μΑ
Output Leakage Current	llo	Vss ≤ Vouт ≤ Vpp, Output Hi	gh impedance	-1.0	+1.0	μΑ
Output High Voltage Level	Vон	$V_{DD} = V_{DD}$ Min, $I_{OH} = -0.5$ m	A	1.4	_	V
Output Low Voltage Level	Vol	IoL = 1 mA		_	0.4	V
V _{DD} Power Down Current	IDDPS	$V_{DD} = V_{DD}$ Max, $V_{IN} = V_{IH}$ or V_{IL} , $CE2 \le 0.2$ V			10	μΑ
V _{DD} Standby Current	IDDS	$V_{DD} = V_{DD} \text{ Max}, V_{IN} = V_{IH} \text{ or } \overline{CE}1 = CE2 = V_{IH}$	VIL,	_	1	mA
Vib Standby Current	IDDS1	$\begin{split} & V_{DD} = V_{DD} \text{ Max,} \\ & \underline{V_{IN}} \leq 0.2 \text{ V or } V_{IN} \geq V_{DD} - 0.2 \text{ V,} \\ & \overline{CE}1 = CE2 \geq V_{DD} - 0.2 \text{ V} \end{split}$		_	100	μА
V. Active Current	IDDA1	V _{DD} = V _{DD} Max, V _{IN} = V _{IH} or V _{IL} ,	trc / twc = Min	_	20	 ∧
V _{DD} Active Current	I _{DDA2}	$\overline{CE}1 = V_{IL}$ and $CE2 = V_{IH}$, $I_{OUT} = 0$ mA	$t_{RC} / t_{WC} = 1 \mu s$		3.0	mA

Notes: • All voltages are referenced to Vss = 0 V.

- DC Characteristics are measured after following POWER-UP timing.
- lout depends on the output load conditions.

2. AC Characteristics

(1) Read Operation

(At recommended operating conditions unless otherwise noted.)

Dovometer	Symbol	Va	alue	Unit	Notes
Parameter	Symbol	Min	Max	Onit	Notes
Read Cycle Time	t RC	80	1000	ns	*1, *2
CE1 Access Time	t ce	_	70	ns	*3
OE Access Time	t oe	_	45	ns	*3
Address Access Time	t AA	_	70	ns	*3, *5
LB, UB Access Time	t BA	_	30	ns	*3
Output Data Hold Time	tон	5	_	ns	*3
CE1 Low to Output Low-Z	tclz	5	_	ns	*4
OE Low to Output Low-Z	tolz	0	_	ns	*4
LB, UB Low to Output Low-Z	t BLZ	0	_	ns	*4
CE1 High to Output High-Z	tснz	_	20	ns	*3
OE High to Output High-Z	tонz	_	20	ns	*3
LB, UB High to Output High-Z	tвнz	_	20	ns	*3
Address Setup Time to CE1 Low	tasc	-5	_	ns	
Address Setup Time to OE Low	taso	10	_	ns	
Address Invalid Time	tax	_	10	ns	*5
Address Hold Time from CE1 High	t chah	-5	_	ns	*6
Address Hold Time from OE High	tонан	-5	_	ns	
WE High to OE Low Time for Read	t whoL	15	1000	ns	*7
CE1 High Pulse Width	tcp	15	_	ns	

^{*1 :} Maximum value is applicable if $\overline{CE}1$ is kept at Low without any address change.

Note: AC characteristics are measured after following power-up timing.

^{*2 :} Address should not be changed within minimum trc.

^{*3 :} The output load 50 pF with 50 Ω termination to $V_{\text{DD}} \times 0.5 \text{ V}.$

^{*4 :} The output load 5 pF without any other load.

^{*5 :} Applicable when $\overline{CE}1$ is kept at Low.

^{*6 :} trc (Min) must be satisfied.

^{*7:} If the actual value of twhoL is shorter than specified minimum value, the actual tAA of following Read may become longer by the amount of subtracting actual value from specified minimum value.

(2) Write Operation

(At recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Va	lue	Unit	Notes
Parameter	Symbol	Min	Max	Unit	Notes
Write Cycle Time	twc	80	1000	ns	*1, *2
Address Setup Time	tas	0	_	ns	*2
CE1 Write Pulse Width	tcw	45	_	ns	*3
WE Write Pulse Width	twp	45	_	ns	*3
LB, UB Write Pulse Width	t _{BW}	45	_	ns	*3
LB, UB Byte Mask Setup Time	t BS	-5	_	ns	*4
LB, UB Byte Mask Hold Time	t вн	-5	_	ns	*5
Write Recovery Time	t wr	0	_	ns	*6
CE1 High Pulse Width	t cp	15	_	ns	
WE High Pulse Width	t whp	15	1000	ns	
LB, UB High Pulse Width	tвнр	15	1000	ns	
Data Setup Time	t DS	20	_	ns	
Data Hold Time	t DH	0	_	ns	
OE High to CE1 Low Setup Time for Write	toncl	-5	_	ns	*7
OE High to Address Setup Time for Write	toes	0	_	ns	*8
LB and UB Write Pulse Overlap	t BWO	20	_	ns	

- *1 : Maximum value is applicable if $\overline{CE}1$ is kept at Low without any address change.
- *2 : Minimum value must be equal or greater than the sum of write pulse width (tcw, twp or tbw) and write recovery time (twr).
- *3 : Write pulse width is defined from High to Low transition of $\overline{\text{CE}}$ 1, $\overline{\text{WE}}$, $\overline{\text{LB}}$ or $\overline{\text{UB}}$, whichever occurs last.
- *4 : Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of $\overline{\text{CE}}1$ or $\overline{\text{WE}}$ whichever occurs last.
- *5 : Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of $\overline{\text{CE}}1$ or $\overline{\text{WE}}$ whichever occurs first.
- *6 : Write recovery time is defined from Low to High transition of $\overline{CE}1$, \overline{WE} , \overline{LB} or \overline{UB} , whichever occurs first.
- *7 : If \overline{OE} is Low after minimum toHCL, read cycle is initiated. In other words, \overline{OE} must be brought to High within 5 ns after \overline{CE} 1 is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum trois met.
- *8 : If \overline{OE} is Low after new address input, read cycle is initiated. In other words, \overline{OE} must be brought to High at the same time or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum tex is met.

Note: AC Characteristics are measured after following POWER-UP timing.

(3) Power Down Parameters

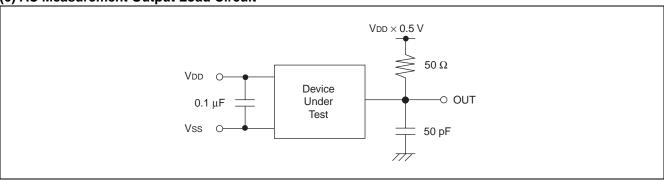
(At recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Va	lue	Unit	Notes
raiailietei	Symbol	Min	Max		Notes
CE2 Low Setup Time for Power Down Entry	t csp	10	_	ns	
CE2 Low Hold Time after Power Down Entry	t C2LP	80	_	ns	
CE1 High Hold Time following CE2 High after Power Down Exit [SLEEP mode only]	tснн	300	_	μs	*
CE1 High Setup Time following CE2 High after Power Down Exit	t chs	0	_	ns	

^{* :} Applicable also to power-up.

(4) Other Timing Parameters

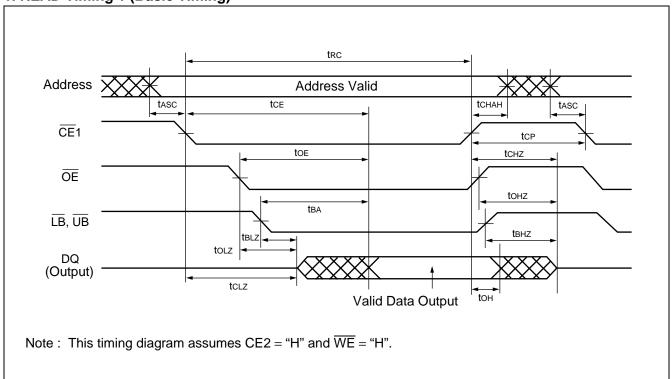
(At recommended operating conditions unless otherwise noted.)

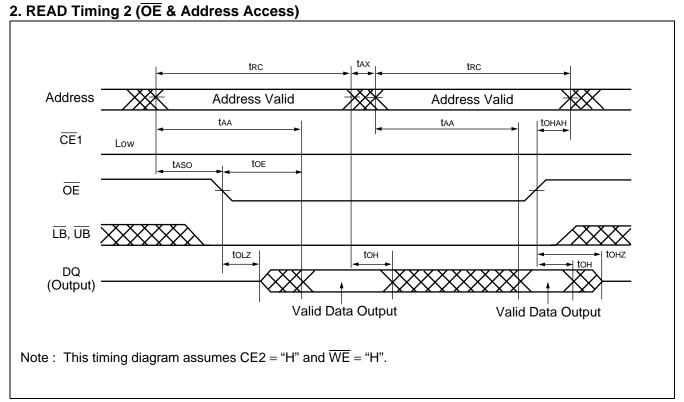

Parameter	Symbol	Va	lue	Unit	Notes
Farameter	Syllibol	Min	Max	Ullit	Notes
CE1 High to OE Invalid Time for Standby Entry	t cнox	10	_	ns	
CE1 High to WE Invalid Time for Standby Entry	t chwx	10	_	ns	*1
CE1 High Hold Time following CE2 High after Power-up	tснн	300	_	μs	
Input Transition Time	t⊤	1	25	ns	*2

^{*1:} Some data might be written into any address location if tchwx (Min) is not satisfied.

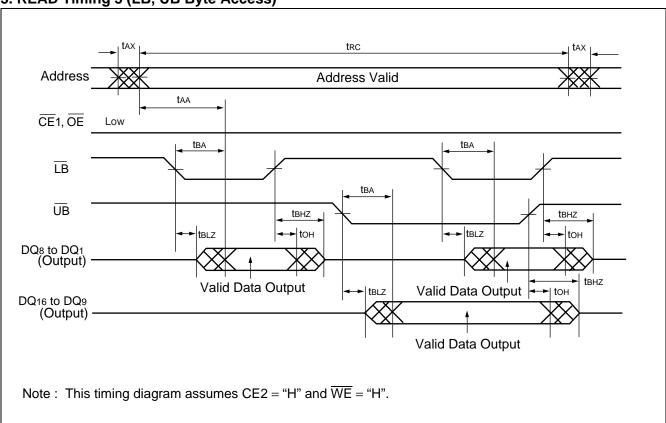
(5) AC Test Conditions

Parameter	Symbol	Conditions	Measured Value	Unit	Notes
Input High Level	Vıн	_	$V_{DD} \times 0.8$	V	
Input Low level	Vıl	_	$V_{DD} \times 0.2$	V	
Input Timing Measurement Level	V _{REF}	_	$V_{DD} \times 0.5$	V	
Input Transition Time	t⊤	Between V _{IL} and V _{IH}	5	ns	

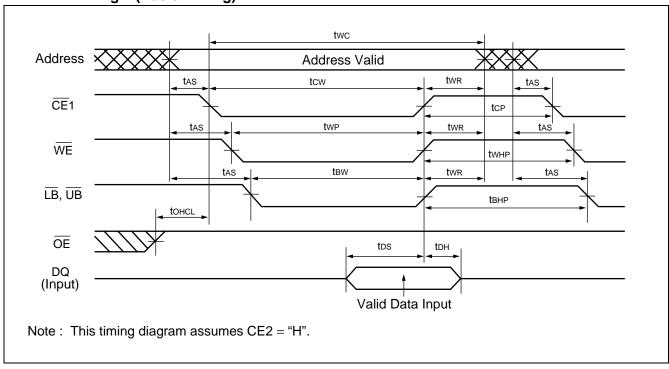

(6) AC Measurement Output Load Circuit

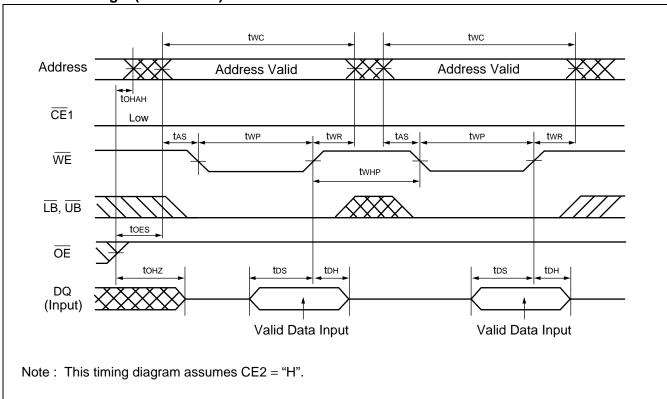


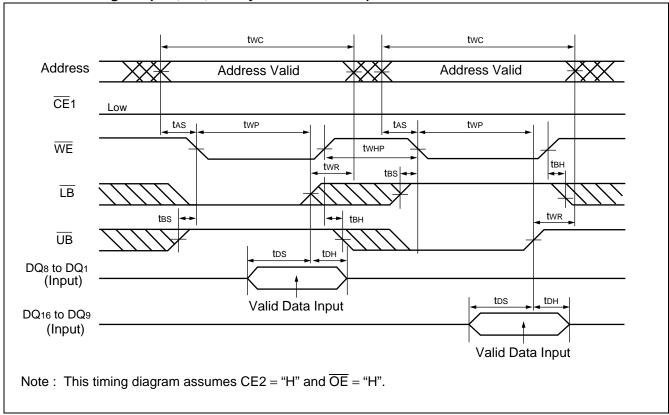
^{*2:} The Input Transition Time (t_T) at AC testing is 5 ns as shown in below. If actual t_T is longer than 5 ns, it may violate AC specifications of some timing parameters.

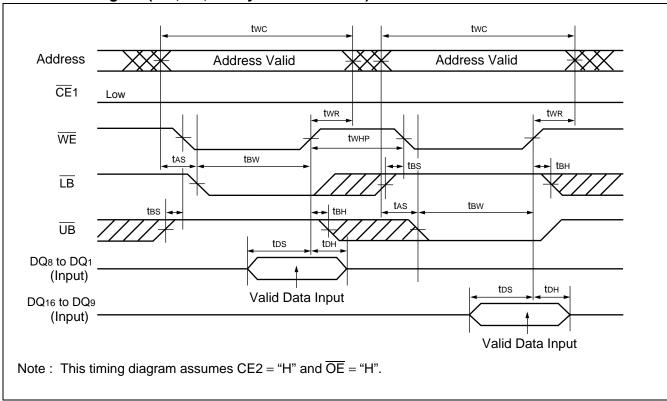

■ TIMING DIAGRAM

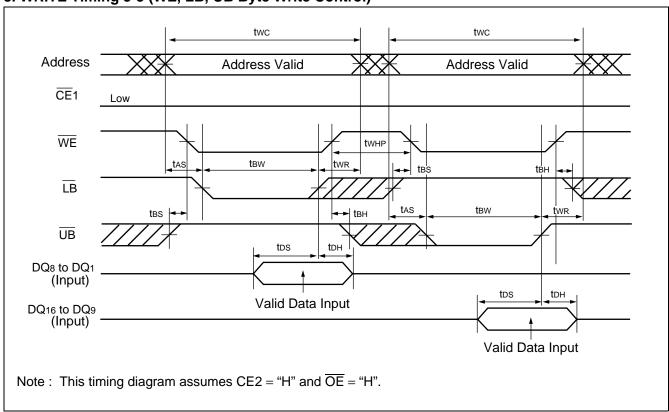
1. READ Timing 1 (Basic Timing)

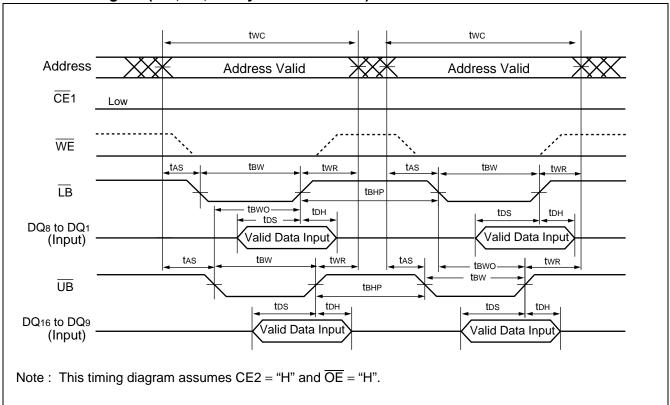


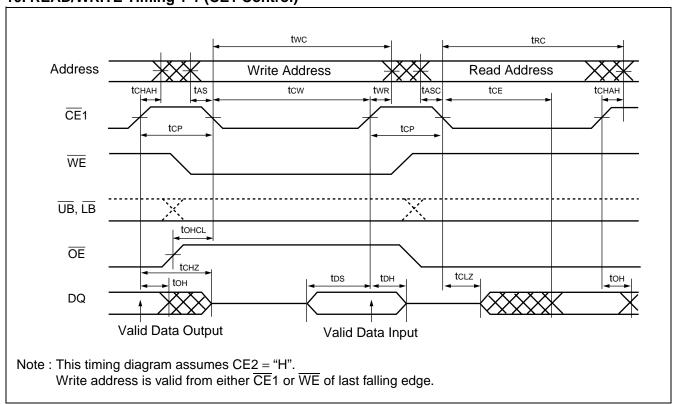

3. READ Timing 3 (LB, UB Byte Access)

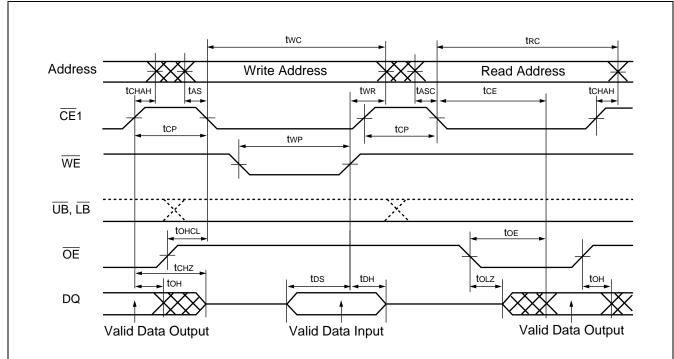

4. WRITE Timing 1 (Basic Timing)


5. WRITE Timing 2 (WE Control)

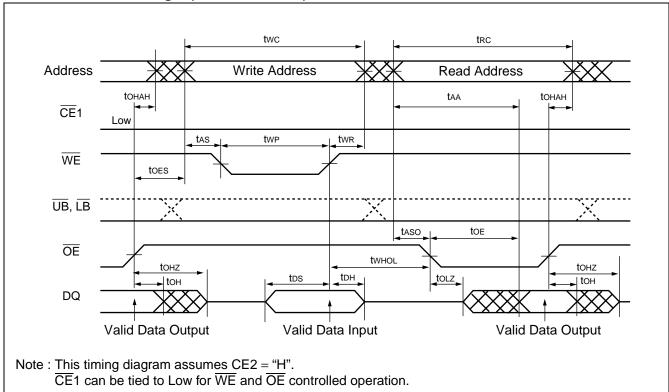

6. WRITE Timing 3-1 (WE, LB, UB Byte Write Control)

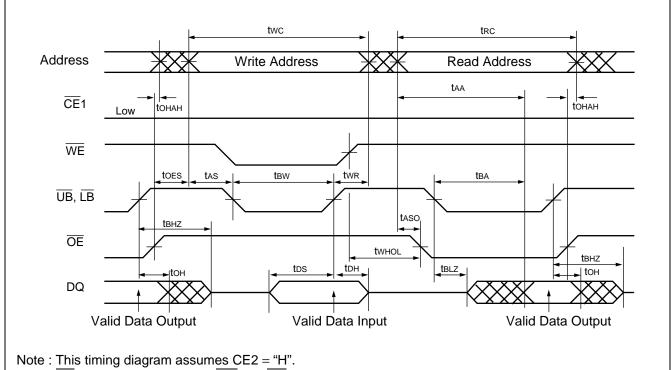

7. WRITE Timing 3-2 (WE, LB, UB Byte Write Control)


8. WRITE Timing 3-3 (WE, LB, UB Byte Write Control)


9. WRITE Timing 3-4 (WE, LB, UB Byte Write Control)

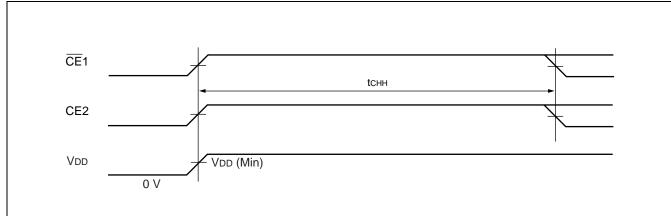
10. READ/WRITE Timing 1-1 (CE1 Control)


11. READ/WRITE Timing 1-2 (CE1, WE, OE Control)

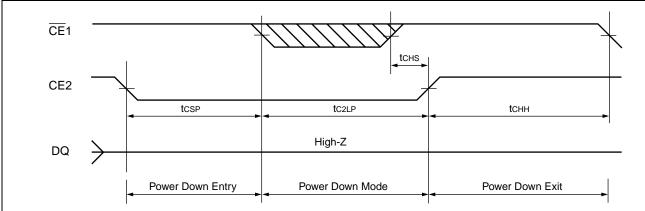

Note: This timing diagram assumes CE2 = "H".

 $\overline{\text{OE}}$ can be fixed Low during write operation if it is $\overline{\text{CE}}1$ controlled write at Read-Write-Read sequence.

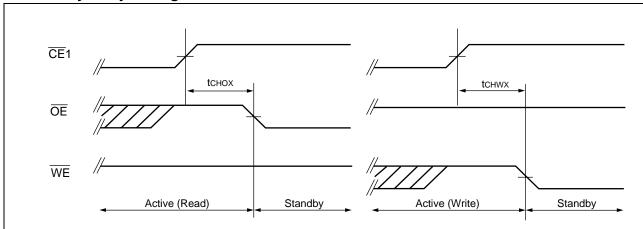
12. READ/WRITE Timing 2 (OE, WE Control)



13. READ/WRITE Timing 3 (OE, WE, LB, UB Control)


 $\overline{\text{CE}}1$ can be tied to Low for $\overline{\text{WE}}$ and $\overline{\text{OE}}$ controlled operation.

14. POWER-UP Timing


Note: tchh specifies after VDD reaches specified minimum level and applicable to both $\overline{\text{CE}}1$ and CE2.

15. POWER DOWN Entry and Exit Timing

Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and Power Down program was not performed prior to this reset.

16. Standby Entry Timing after Read or Write

Note: Both tchox and tchwx define the earliest entry timing for Standby mode.

If either of timing is not satisfied, it takes trc (Min) period for Standby mode from CE1 Low to High transition.

■ BONDING PAD INFORMATION

Please contact local FUJITSU representative for pad layout and pad coordinate information.

■ ORDERING INFORMATION

Part Number	Shipping Form	Remarks
MB82DS01181E-70LWT-A	Wafer	

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0602