FEATURES

- Fully qualified to Class H or K
- · Radiation hardened
- -55° to +125°C operation
- 16 to 40 VDC input
- · Fully isolated
- · Optocoupler feedback
- Fixed frequency, 550 kHz typical
- Topology Single Ended Flyback
- Inhibit function
- Indefinite short circuit protection
- · 5 watts output power
- Up to 76% efficiency

DC/DC CONVERTERS 28 VOLT INPUT

MODELS							
VDC OUTPUT							
SINGLE	DUAL						
3.3	±5						
5	±12						
12	±15						
15							

Size (max.): 1.075 x 1.075 x 0.270 inches

(27.31 x 27.31 x 6.86 mm)

See Figures 23 and 24 for dimensions.

Weight: 15 grams maximum.

Screening: Space prototype, Class H, or Class K (MIL-PRF-38534)

Radiation hardness levels O or R Available configurations: OO, HO, HR, KR

DESCRIPTION

The SMSA Series[™] of high frequency DC/DC converters offers a new standard of performance for low power, space qualified DC/DC converters. SMSA converters provide up to 5 watts output power over the full military temperature range of −55°C to +125°C with up to 76% efficiency. Thick-film hybrid techniques provide military/aerospace reliability levels and optimum miniaturization. The hermetically sealed case is only 1.075 by 1.075 inches — with a height of only 0.270 inches. Power density for the SMSA Series converters is 16 watts per cubic inch. The SMSA Series' small size, light weight, and hermetically sealed metal packages make them ideal for use in space, military, aerospace and other high reliability applications.

SCREENING AND REPORTS

SMSA converters offer three screening options – Space prototype Class H, or Class K – and two levels of radiation hardness. See Tables 1 through 3 for more information. Detailed reports on product performance are also available and are listed in Table 4.

CONVERTER DESIGN

The SMSA converters are switching regulators that use a flyback converter design with a constant switching frequency of 550 kHz. They are regulated, isolated units using a pulse width modulated topology and built as high reliability thick-film hybrids. Isolation between input and output circuits is provided with a transformer in the forward power loop and an optical link in the feedback control loop. Excellent input line transient response and audio rejection is achieved by an advanced feed-forward compensation technique. Negative output regulation is maintained by tightly coupled magnetics. Predictable current limit is accomplished by direct monitoring of the output load current, which results in a constant current output above the overload point. Internal input and output filters eliminate the need for external capacitors.

WIDE VOLTAGE RANGE

The SMSA converters are designed to provide full power operation over the full 16 to 40 VDC voltage range. An undervoltage lockout feature keeps the converter shutdown below approximately 13 VDC to ensure smooth initialization.

IMPROVED DYNAMIC RESPONSE

The SMSA feed-forward compensation system provides excellent dynamic response and noise rejection. Audio rejection is typically 50 dB. The minimum to maximum step line transient response is typically less than 1%.

INHIBIT FUNCTION

SMSA converters provide a TTL open collector-compatible inhibit feature that can be used to disable internal switching and inhibit the unit's output. Inhibiting in this manner results in low standby current, and no generation of switching noise.

The converter is inhibited when the TTL compatible low (\leq 0.8V) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open collector gate. The open circuit output voltage associated with the inhibit pin is 9 to 11 VDC. In the inhibit mode, a maximum of 4 mA must be sunk from the inhibit pin at 28 VDC input.

DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage

• 16 to 40 V

Output Power

• 5 watts

Lead Soldering Temperature (10 sec per lead)

• 300°C

Storage Temperature Range (Case)

• -65°C to +135°C

INHIBIT

Inhibit TTL Open Collector

- Logic low (output disabled)
 Logic low voltage ≤0.8 V max
 Inhibit pin current 4 mA max
- Referenced to input common
- Logic high (output enabled)

 Open collector

RECOMMENDED OPERATING CONDITIONS Input Voltage Range

- 16 to 40 VDC continuous
- 50 V for up to 50 msec transient

Case Operating Temperature (Tc)

- $\bullet\,$ –55°C to +125°C full power
- -55°C to +135°C absolute

Derating Output Power/Current (Tc)

• Linearly from 100% at 125°C to 0% at 135°C

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

100 ppm/°C typical

Input to Output Capacitance

50 pF typical

Isolation100 megohm minimum at 500 V

Audio Rejection

50 dB typical

Conversion Frequency

550 kHz typical
 450 kHz min, 600 kHz max

Inhibit Pin Voltage (unit enabled)

• 9 to 11 V

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, radiation level O, unless otherwise specified.

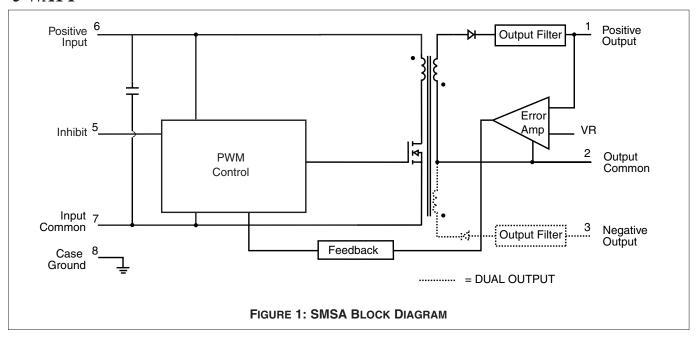
SINGLE OUTPUT MOI	DELS	SM	SA283	R3S	SI	ISA280	05S	SI	ISA281	12S	SIV	ISA281	15S	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	Tc = -55°C TO +125°C	3.25	3.30	3.35	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
OUTPUT CURRENT	Tc = -55°C TO +125°C													
	V _{IN} = 16 TO 40 VDC	0	_	1200	0	_	1000	0	_	417	0	_	333	mA
OUTPUT POWER	V _{IN} = 16 TO 40 VDC													
	Tc = -55°C TO +125°C	_	_	4	—	_	5	_	_	5	_	_	5	W
OUTPUT RIPPLE														
VOLTAGE	10 kHz - 2 MHz	_	300	600	_	150	450	_	125	500	_	150	600	mV p-p
LINE REGULATION	V _{IN} = 16 TO 40 VDC													
	Tc = -55°C TO +125°C	_	10	50	l —	10	50	_	10	50	_	10	50	mV
LOAD REGULATION	NO LOAD TO FULL													
	Tc = -55°C TO +125°C	_	10	50	—	10	50	_	10	50	_	10	50	mV
INPUT VOLTAGE	$Tc = -55^{\circ}C TO + 125^{\circ}C$													
	NO LOAD TO FULL													
	CONTINUOUS	16	28	40	16	28	40	16	28	40	16	28	40	VDC
	TRANSIENT ³ 50 ms	0	_	50	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD	_	35	60	—	35	60	_	35	60	_	35	60	mA
	FULL LOAD	_	250	_	_	250		_	235	_	_	235	_	
	INHIBITED	_	3	5	-	3	5	_	3	5	_	3	5	
INPUT RIPPLE	10 kHz - 10 MHz	_	50	200	-	50	200	_	50	200	_	50	200	mA p-p
CURRENT	$Tc = -55^{\circ}C TO + 125^{\circ}C$	_	60	300	<u> </u>	60	300	_	60	300	_	60	300	пи р-р
EFFICIENCY		60			68	74		69	74	_	%			
LOAD FAULT ^{1, 2}	POWER DISSIPATION	_	1.5	2.4	-	1.5	2.0	_	1.2	1.9	_	1.2	1.8	W
SHORT CIRCUIT	RECOVERY	_	12.5	25	-	12.5	25	_	1	10	_	1	10	ms
STEP LOAD	50% - 100% - 50%													
RESPONSE	TRANSIENT		200	500	<u> </u>	200	500	_	300	750	_	400	1000	mV pk
	RECOVERY 2, 3	_	200	500	—	200	500	_	400	1000	_	400	1000	μs
STEP LINE	TRANSIENT													
RESPONSE ^{2, 3}	16 TO 40 V _{IN}	_	200	500	—	200	500	_	200	800	_	200	500	mV pk
	40 TO 16 V _{IN}	_	200	500	1-	200	500	T —	250	600	_	200	500	illy pk
	RECOVERY													
	16 TO 40 V _{IN}	_	400	1000	_	400	1000	-	700	1300	_	500	1300	
	40 TO 16 V _{IN}	_	400	1000	 	400	1000	_	700	1300	_	500	1300	μs
START-UP	DELAY	_	10	75	-	10	75	_	10	75	_	10	75	ms
	OVERSHOOT ³	_	0	200	-	0	200	_	0	500	_	0	500	mV pk

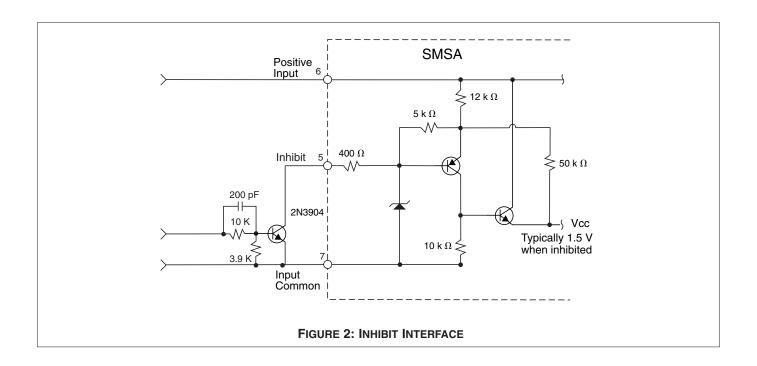
Notes

- 1. Indefinite short circuit protection not guaranteed above 125°C (case).
- 2. Recovery time is measured from application of the transient to point at which V_{OUT} is within 1% of V_{OUT} at final value.
- 3. Guaranteed but not tested.

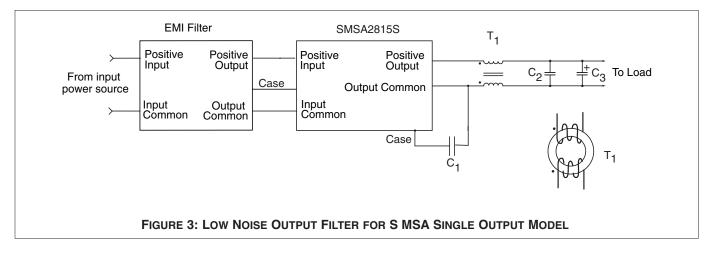
SMSA SERIES 5 WATT

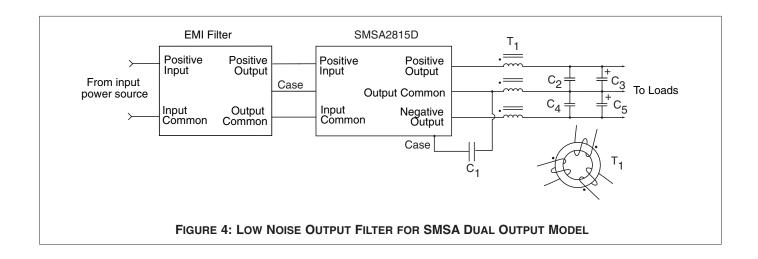
Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, radiation level O, unless otherwise specified.


DUAL OUTPUT MODELS		S	MSA 28	05D	SMSA2812D			SMSA2815D			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
	-V _{OUT}	4.9	5.0	5.1	11.76	12.00	12.24	14.70	15.00	15.30	100
OUTPUT CURRENT ¹	V _{IN} = 16 to 40 VDC										
	Tc = -55°C to +125°C	_	±500	800	_	±208	333	_	±167	267	mA
OUTPUT POWER ¹	V _{IN} = 16 to 40 VDC										
	Tc = -55°C to +125°C	_	_	5	_	_	5	_	_	5	W
OUTPUT RIPPLE VOLT.	10 kHz - 2 MHz	_	_	300	_	80	300	-	120	300	mV p-p
LINE REGULATION	Vin = 16 to 40 VDC										
	$Tc = -55^{\circ}C \text{ to } +125^{\circ}C$										
	+V _{OUT}	_	20	100	_	20	100	-	10	50	mV
	-V _{OUT}	_	40	200	_	40	200	_	40	180	_ ''''v
LOAD REGULATION	NO LOAD TO FULL										
	Tc = -55°C to +125°C										
	+V _{OUT}	_	10	120	_	10	120	_	10	50	.,
	-V _{OUT}	_	100	400	_	100	400	_	50	200	_ mV
CROSS REGULATION ²	+P _O = 30 - 70 %, -P _O = 70 - 30%		5		_	3.7	6	_	3	6	
	-P _O = 30 - 70 %, +P _O = 70 - 30%	_		8							%
INPUT VOLTAGE	NO LOAD TO FULL										
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
	TRANSIENT ⁵ 50 msec			50	_		50	_		50	V
INPUT CURRENT	NO LOAD	$+ \equiv$	30	50		40	63	$+ \equiv -$	38	60	V
IN OT COMMENT	FULL LOAD	+_	248			235		_	235		mA
	INHIBITED		3			3			3		- 11114
INPUT RIPPLE	10 kHz TO 10 MHz		50	200		50	200		50	200	
CURRENT	$Tc = -55^{\circ}C \text{ to } +125^{\circ}C$	_	60	300	_	60	300	+ _	60	300	mA p-p
EFFICIENCY	10 00 0 10 1 120 0	65	70	_	67	73	_	68	73	_	%
LOAD FAULT ^{3, 4}	POWER DISSIPATION										
	SHORT CIRCUIT	_	1.3	2.1	_	1.3	1.7	-	1.3	1.6	W
	RECOVERY	_	_	50	_	1	30	<u> </u>	1	50	ms
STEP LOAD	50% - 100% - 50% BALANCED										
RESPONSE	TRANSIENT	_	±200	±550	_	±200	±550	_	±220	±600	mV
	RECOVERY ^{4, 5}	_	200	500	_	200	500	-	200	500	μs
STEP LINE RESP. ^{4, 5}	16 TO 40 VDC	_	±200	±500	_	±200	±500	_	±600	±1500	m\/ nl-
	TRANSIENT 40 TO 16 VDC	_	±200	±500	_	±200	±500	<u> </u>	±600	±1500	mV pk
	16 TO 40 VDC	_	300	750	_	300	750	_	500	1200	— US
	RECOVERY 40 TO 16 VDC	_	800	2000	_	800	2000	T —	500	1200	
START-UP	DELAY	_	10	30	_	10	30	_	10	25	ms
	OVERSHOOT ⁵	_	0	500	_	0	500	-	0	500	mV pk


Notes

- 1. Up to 4 watts (80% of full power) is available from either output providing the opposite output is carrying 20% of total power.
- Shows regulation effect on the minus output during the defined cross loading conditions, with 80% and 20% referring to the total output power of the converter. See Figures 15 and 16.
- 3. Indefinite short circuit protection not guaranteed above 125°C (case).
- 4. Recovery time is measured from application of the transient to point at which V_{OUT} is within 1% of V_{OUT} at final value.
- 5. Guaranteed but not tested.


DC/DC CONVERTERS



SMSA SERIES 5 WATT

The filter suggestions in Figures 3 and 4 will further reduce the output ripple for systems requiring very low output noise.

 $C1 = 0.27 \mu F$ ceramic capacitor, 500V

 $C2 = C4 = 6.8 \mu F$ tantalum capacitor

 $C3 = C5 = 0.27 \mu F$ ceramic capacitor

Single output: T1 = 15T #28 AWG winding on toroid, μ_i = 5000

Dual output: T2 = 10T #28 AWG winding on toroid, μ_i = 5000

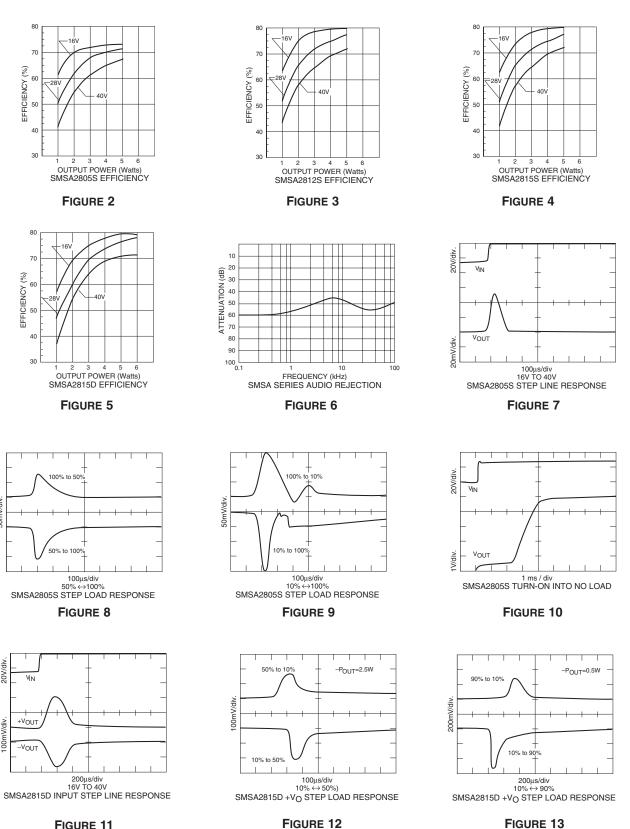
For best results, make interconnections as short as possible.

DC/DC CONVERTERS

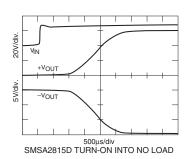
	PIN OUT					
Pin	Single Output	Dual Output				
1	Positive Output	Positive Output				
2	Output Common	Output Common				
3	No connection	Negative Output				
4	No connection	No connection				
5	Inhibit	Inhibit				
6	Positive Input	Positive Input				
7	Input Common	Input Common				
8	Case Ground	Case Ground				
	on top of cover i	5				
	8 7 • •	6 •				
See Figures 23 and 24 for dimensions.						
FIGURE 5: PIN OUT BOTTOM VIEW						

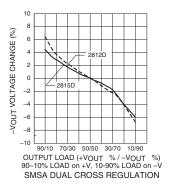
Base Model Voltage In (28V) Output Voltage Number of Outputs (S = single, D = dual) Environmental Screening Radiation Tolerance

SMD NUMBERS						
STANDARD MICROCIRCUIT DRAWING (SMD)	SMSA SERIES SIMILAR PART					
IN PROCESS	SMSA283R3S/HO					
5962-9309202HXC	SMSA2805S/HO					
5962-9309302HXC	SMSA2812S/HO					
5962-9309402HXC	SMSA2815S/HO					
5962-9308902HXC	SMSA2812D/HO					
5962-9309002HXC	SMSA2815D/HO					


The SMD number shown is for Class H screening and no Radiation Hardness Assurance (RHA) level. See the SMD for the numbers for other screening and radiation levels. For exact specifications for an SMD product, refer to the SMD drawing. Call your Interpoint representative for status on the SMSA SMD releases which are "in process." SMDs can be downloaded from:

http://www.dscc.dla.mil/programs/smcr


SMSA SERIES 5 WATT


Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

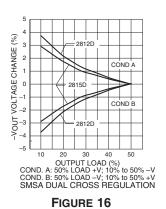


FIGURE 14

17 2805S 2812S 2812S 2815S 281

FIGURE 17

FIGURE 15

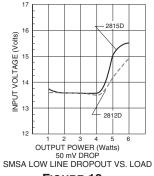
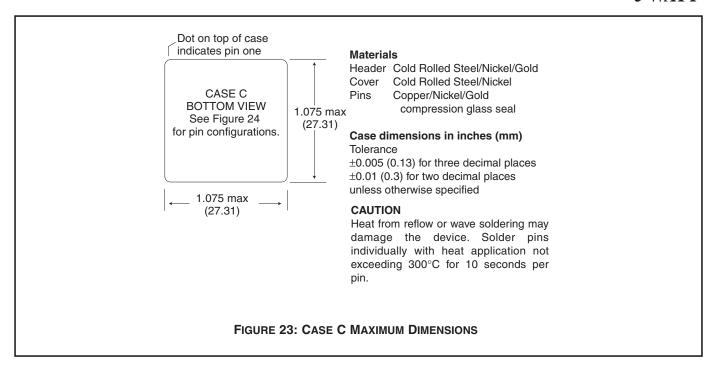
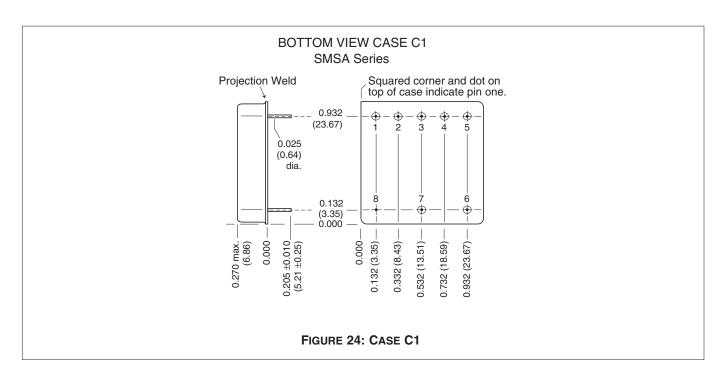




FIGURE 18

SMSA SERIES 5 WATT

Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

DC/DC CONVERTERS

TABLE 1: ELEMENT EVALUATION

ELEMENT EVALUATION	SPA	ACE				
	PROT	OTYPE	CLA	ASS	CL	ASS
TEST PERFORMED	(0))	H	ł	K	
(COMPONENT LEVEL)	M/S	Р	M/S	Р	M/S	P
Element Electrical	yes	no	yes	yes	yes	yes
Element Visual	no	no	yes	yes	yes	yes
Internal Visual	no	no	yes	no	yes	no
Temperature Cycling	no	no	no	no	yes	yes
Constant Acceleration	no	no	no	no	yes	yes
Interim Electrical	no	no	no	no	yes	no
Burn-in	no	no	no	no	yes	no
Post Burn-in Electrical	no	no	no	no	yes	no
Steady State Life	no	no	no	no	yes	no
Voltage Conditioning /Aging	no	no	no	no	no	yes
Visual Inspection	no	no	no	no	no	yes
Final Electrical	no	no	yes	yes	yes	yes
Wire Bond Evaluation	no	no	yes	yes	yes	yes
SEM	no	no	no	no	yes	no
SLAM TM /C-SAM: Input capacitors only (Add'I test, not req. by H or K)	no	no	no	yes	no	yes

Notes

M/S Active components (Microcircuit and Semiconductor Die)

P Passive components

Definitions

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534

SEM: Scanning Electron Microscopy

SLAM™: Scanning Laser Acoustic Microscopy C-SAM: C - Mode Scanning Acoustic Microscopy

TABLE 2: PRODUCT ENVIRONMENTAL SCREENING

ENVIRONMENTAL SCREENING	SPACE		
TEST PERFORMED	PROTOTYPE	CLASS	CLASS
(END ITEM LEVEL)	(O)	Н	K
Non-destruct bond pull			
Method 2023	no	yes	yes
Pre-cap inspection			
Method 2017, 2032	yes	yes	yes
Temperature cycle			
Method 1010, Cond. C	yes	yes	yes
Constant acceleration			
Method 2001, 3000 g	yes	yes	yes
PIND Test			
Method 2020, Cond. B	no	yes	yes
Radiography			
Method 2012	no	no	yes
Pre burn-in test	yes	yes	yes
Burn-in, Method 1015, 125°C			
96 hours	yes	no	no
160 hours	no	yes	no
2 x 160 hour (includes mid BI test)	no	no	yes
Final electrical test			
MIL-PRF-38534, Group A	yes	yes	yes
Hermeticity test			
Fine Leak,			
Method 1014, Cond. A	yes	yes	yes
Gross Leak,			
Method 1014, Cond. C	yes	yes	yes
Final visual inspection			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

DC/DC CONVERTERS

TABLE 3: RADIATION HARDNESS LEVELS

PRODUCT LEVEL AVAILABILITY	ENVIRONMENTAL SCREENING LEVELS					
	SPACE		01.400			
	PROTOTYPE	CLASS	CLASS			
RADIATION HARDNESS LEVELS	(0)	Н	K			
O: Standard, no radiation guarantee For system evaluation, electrically and mechanically comparable to H and K level.	00	НО	Not available			
R: Radiation hardened – Tested lots Up to 100 k Rads (Si) total dose SEU guarantee up to 40 MeV	Not available	HR	KR			

R is referenced to MIL-PRF-38534, appendix G, Radiation Hardness Assurance (RHA) levels.

TABLE 4: REPORTS: AVAILABLE FOR CUSTOMER REVIEW AT INTERPOINT

- 1. Radiation Susceptibility Analysis
- 2. Electrical/Thermal Stress Analysis and Derating Report
- 3. MTBF Report
- 4. FMEA Report

HO option: Reports 2, 3, and 4 are included with purchase. **OO** option: Select reports available as separate purchases.

Contact Information: www.interpoint.com

Interpoint Headquarters USA Interpoint UK Interpoint France

Email: power@intp.com

