

128Kx16 SRAM/512Kx16 FLASH MODULE FEATURES

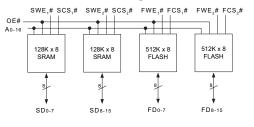
- Access Times of 35ns (SRAM) and 90ns (FLASH)
- Packaging
 - 66 pin, PGA Type, 1.075" square HIP, Hermetic Ceramic HIP (Package 400)
 - 68 lead, Hermetic CQFP (G2U), 22.4mm (0.880") square (Package 510) 3.56mm (0.140") height. Designed to fit JEDEC 68 lead 0.990" CQFJ footprint (FIGURE 2)
- 128Kx16 SRAM
- 512Kx16 5V FLASH
- Organized as 128Kx16 of SRAM and 512Kx16 of Flash Memory with separate Data Buses
- Both blocks of memory are User Configurable as 256Kx8
- Low Power CMOS
- Commercial, Industrial and Military Temperature Ranges
- TTL Compatible Inputs and Outputs

FIGURE1 – PIN CONFIGURATION FOR WSF2816-39H1X

	Top View						
1		12	23	34	45	56	
0	SD8	⊖SWE2#	OSD15	FD8 🔿	Vcc〇	FD15	
0	SD9	OSCS2#	OSD14	FD9 🔿	FCS2#	FD14	
0	SD10		⊖SD13	FD10 🔿	FWE2#	FD13	
0	A13	⊖sd11	⊖SD12	A6 🔿	FD11	FD12	
0	A14	()A10	OE#	A7 🔿	A3	A0 🔿	
0	A15	()A11	A 17	NC	A4	A1 ()	
0	A16	()A12	⊖SWE1#	A8 🔾	A5	A2 🔿	
0	A18	Vcc	⊖SD7	A9 🔿	FWE1#	FD7 🔿	
0	SD0	OSCS1#	⊖SD6	FD0 🔿	FCS1#	FD6	
0	SD1	ONC	⊖SD5	FD1 🔿		FD5	
0	SD2	⊖SD3	⊖SD4	FD2	FD3	FD4	
11		22	33	44	55	66	

- Built-in Decoupling Caps and Multiple Ground Pins for Low Noise Operation
- Weight:

WSF2816-39G2UX - 8 grams typical WSF2816-39H1X - 13 grams typical

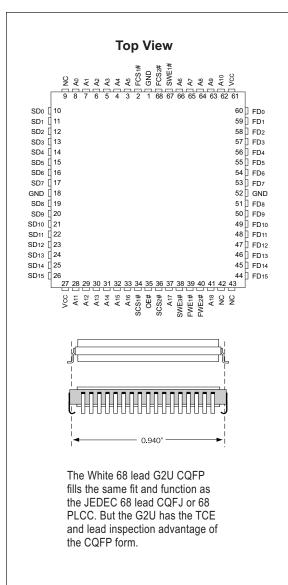

FLASH MEMORY FEATURES

- 100,000 Erase/Program Cycles
- Sector Architecture
 - 8 equal size sectors of 64K bytes each
 - Any combination of sectors can be concurrently erased. Also supports full chip erase
- 5 Volt Programming; 5V ± 10% Supply
- Embedded Erase and Program Algorithms
- Hardware Write Protection

Note: For programming information refer to Flash Programming 4M5 Application Note.

Pin Description				
FD ₀₋₁₅	Flash Data Inputs/Outputs			
SD0-15	SRAM Data Inputs/Outputs			
A0-18	Address Inputs			
SWE1-2#	SRAM Write Enable			
SCS1-2#	SRAM Chip Selects			
OE#	Output Enable			
Vcc	Power Supply			
GND	Ground			
NC	Not Connected			
FWE ₁₋₂ #	Flash Write Enable			
FCS ₁₋₂ #	Flash Chip Select			

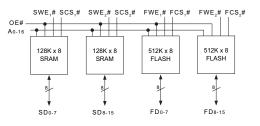
Block Diagram



White Electronic Designs Corp. reserves the right to change products or specifications without notice.

1

WHITE ELECTRONIC DESIGNS WSF2816-39XX


FIGURE 2 – PIN CONFIGURATION FOR WSF2816-39G2UX

Pin Description

FD0-15	Flash Data Inputs/Outputs
SD0-15	SRAM Data Inputs/Outputs
A0-18	Address Inputs
SWE1-2#	SRAM Write Enable
SCS1-2#	SRAM Chip Selects
OE#	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected
FWE ₁₋₂ #	Flash Write Enable
FCS1-2#	Flash Chip Select

Block Diagram

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Operating Temperature	TA	-55	+125	°C
Storage Temperature	Tstg	-65	+150	°C
Signal Voltage Relative to GND	Vg	-0.5	7.0	V
Junction Temperature	TJ		150	°C
Supply Voltage	Vcc	-0.5	7.0	V

Parameter	
Flash Data Retention	20 years
Flash Endurance (write/erase cycles)	100,000

NOTES: 1. Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Мах	Unit
Supply Voltage	Vcc	4.5	5.5	V
Input High Voltage	Vih	2.2	V _{CC} + 0.3	V
Input Low Voltage	VIL	-0.5	+0.8	V

SRAM TRUTH TABLE

SCS#	OE#	SWE#	Mode	Data I/O	Power
Н	Х	Х	Standby	High Z	Standby
L	L	Н	Read	Data Out	Active
L	Н	Н	Read	High Z	Active
L	Х	L	Write	Data In	Active

CAPACITANCE

T_A = +25°C

Test	Symbol	Condition	Max	Unit
OE# Capacitance	COE	V _{IN} = 0V, f = 1.0MHz	50	pF
WE# Capacitance	CWE	V _{IN} = 0V, f = 1.0MHz	20	pF
CS# Capacitance	Ccs	V _{IN} = 0V, f = 1.0MHz	20	pF
Data I/O Capacitance	Ci/o	VIN = 0V, f = 1.0MHz	20	pF
Address Line Capacitance	CAD	VIN = 0V, f = 1.0MHz	50	pF

This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS

 V_{CC} = 5.0V, V_{SS} = 0V, -55°C \leq T_A \leq +125°C

Parameter	Symbol	Conditions	Min	Max	Unit
Input Leakage Current	ILI	V_{CC} = 5.5, V_{IN} = GND to V_{CC}		10	μA
Output Leakage Current	ILO	SCS# = VIH, OE# = VIH, VOUT = GND to Vcc		10	μA
SRAM Operating Supply Current x 16 Mode	ICCx16	SCS# = VIL, OE# = FCS# = VIH, f = 5MHz, Vcc = 5.5		325	mA
Standby Current	Isb	FCS# = SCS# = VIH, OE# = VIH, f = 5MHz, Vcc = 5.5		20	mA
SRAM Output Low Voltage	Vol	I _{OL} = 8.0mA, V _{CC} = 4.5		0.4	V
SRAM Output High Voltage	Vон	I _{OH} = -4.0mA, V _{CC} = 4.5	2.4		V
Flash V _{CC} Active Current for Read (1)	Icc1	FCS# = VIL, OE# = SCS# = VIH		120	mA
Flash V _{CC} Active Current for Program or Erase (2)	Icc2	FCS# = VIL, OE# = SCS# = VIH		140	mA
Flash Output Low Voltage	Vol	I _{OL} = 8.0mA, V _{CC} = 4.5		0.45	V
Flash Output High Voltage	V _{OH1}	I _{OH} = -2.5 mA, V _{CC} = 4.5	0.85 x Vcc		V
Flash Output High Voltage	Vон2	Іон = -100 µА, Vcc = 4.5	Vcc -0.4		V
Flash Low Vcc Lock Out Voltage	Vlko		3.2		V

NOTES:

1. The Icc current listed includes both the DC operating current and the frequency dependent component (@ 5 MHz).

The frequency component typically is less than 2mA/MHz, with OE# at VIH.

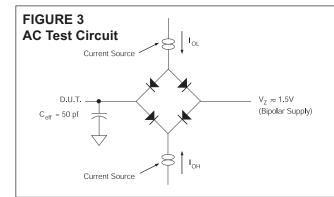
2. Icc active while Embedded Algorithm (program or erase) is in progress.

3. DC test conditions: $V_{IL} = 0.3V$, $V_{IH} = V_{CC} - 0.3V$

SRAM AC CHARACTERISTICS

 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter	Complexed	-35		11 14
Read Cycle	Symbol	Min	Мах	Unit
Read Cycle Time	trc	35		ns
Address Access Time	taa		35	ns
Output Hold from Address Change	tон	0		ns
Chip Select Access Time	tacs		35	ns
Output Enable to Output Valid	toe		20	ns
Chip Select to Output in Low Z	tcLZ1	3		ns
Output Enable to Output in Low Z	toLz ¹	0		ns
Chip Disable to Output in High Z	tcHz ¹		20	ns
Output Disable to Output in High Z	tonz ¹		20	ns


1. This parameter is guaranteed by design but not tested.

SRAM AC CHARACTERISTICS

 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

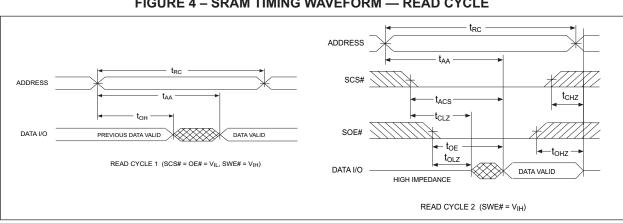
Parameter	0	-3	11	
Write Cycle	Symbol	Min	Max	Unit
Write Cycle Time	twc	35		ns
Chip Select to End of Write	tcw	25		ns
Address Valid to End of Write	taw	25		ns
Data Valid to End of Write	tow	20		ns
Write Pulse Width	twp	25		ns
Address Setup Time	tas	0		ns
Address Hold Time	tан	0		ns
Output Active from End of Write	tow1	4		ns
Write Enable to Output in High Z	twHz1		20	ns
Data Hold from Write Time	t _{DH}	0		ns

1. This parameter is guaranteed by design but not tested.

AC TEST CONDITIONS

Parameter	Тур	Unit
Input Pulse Levels	V _{IL} = 0, V _{IH} = 3.0	V
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	V
Output Timing Reference Level	1.5	V

Notes: Vz is programmable from -2V to +7V.


IOL & IOH programmable from 0 to 16mA.

- Tester Impedance Z0 = 75Ω .
- Vz is typically the midpoint of VOH and VOL.

IOL & IOH are adjusted to simulate a typical resistive load circuit.

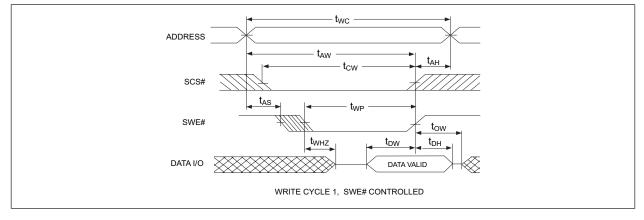

ATE tester includes jig capacitance.

FIGURE 4 – SRAM TIMING WAVEFORM — READ CYCLE

FIGURE 5 – SRAM WRITE CYCLE — SWE# CONTROLLED

FIGURE 6 – SRAM WRITE CYCLE — SCS# CONTROLLED

FLASH AC CHARACTERISTICS – WRITE/ERASE/PROGRAM OPERATIONS, FWE# CONTROLLED $V_{CC} = 5.0V - 55^{\circ}C < T_{A} < +125^{\circ}C$

Parameter Write Cycle Time	Symbol		-90		
			Min	Max	Unit
	tavav	twc	90		ns
Chip Select Setup Time	telwl	tcs	0		ns
Write Enable Pulse Width	twlwh	twp	45		ns
Address Setup Time	tavwl	tas	0		ns
Data Setup Time	tovwн	tos	45		ns
Data Hold Time	twhdx	toн	0		ns
Address Hold Time	twlax	tан	45		ns
Chip Select Hold Time	twhen	tсн	0		ns
Write Enable Pulse Width High	twhwL	twpн	20		ns
Duration of Byte Programming Operation (1)	twhwh1			300	μs
Sector Erase Time (2)	twhwh2			15	sec
Read Recovery Time Before Write	tghwl		0		μs
Vcc Set-up Time		tvcs	50		μs
Chip Programming Time				11	sec
Output Enable Setup Time		toes	0		ns
Output Enable Hold Time (1)		tоен	10		ns
Chip Erase Time				64	sec

NOTES:

1. Typical value for twhwh1 is 7µs.

2. Typical value for twhwh1 is 1sec.

3. Typical value for Chip Erase Time is 8sec.

4. For Toggle and Data# Polling.

FLASH AC CHARACTERISTICS - READ ONLY OPERATIONS

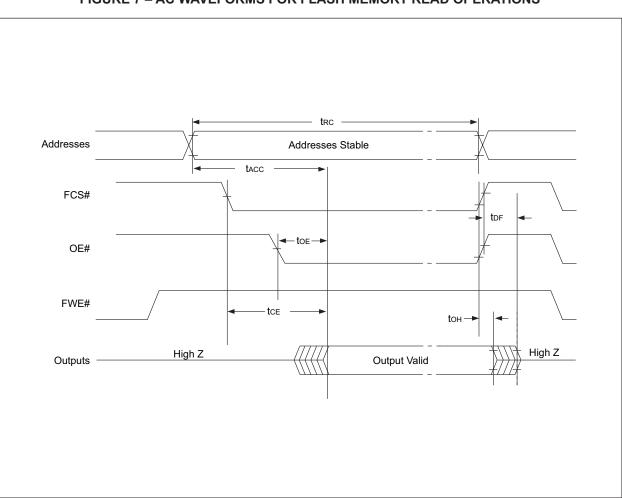
 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

Densmotor	Symbol		-90		11.24
Parameter			Min	Мах	Unit
Read Cycle Time	tavav	trc	90		ns
Address Access Time	tavqv	tacc		90	ns
Chip Select Access Time	telqv	tce		90	ns
OE# to Output Valid	tglqv	toe		35	ns
Chip Select to Output High Z (1)	t EHQZ	tDF		20	ns
OE# High to Output High Z (1)	tgнqz	tDF .		20	ns
Output Hold from Address, CS# or OE# Change, whichever is first	taxqx	toн	0		ns

1. Guaranteed by design, not tested.

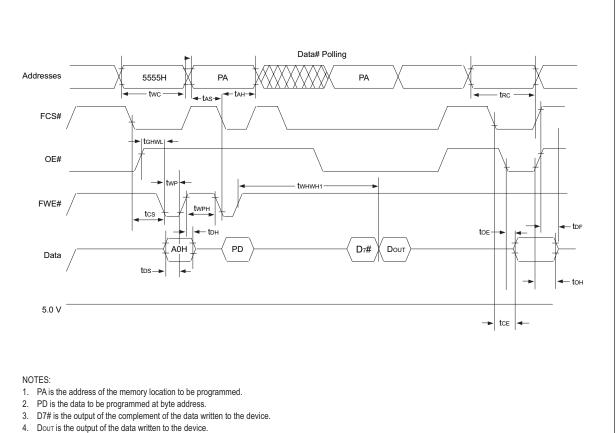
FLASH AC CHARACTERISTICS – WRITE/ERASE/PROGRAM OPERATIONS, FCS# CONTROLLED

VCC = 5.UV, -55 C ≤ IA ≤ +125 C							
Parameter	Symbol		-90		11		
			Min	Max	Unit		
Write Cycle Time	tavav	twc	90		ns		
FWE# Setup Time	twlel	tws	0		ns		
FCS# Pulse Width	teleн	tcp	45		ns		
Address Setup Time	tavel	tas	0		ns		
Data Setup Time	tdveн	tos	45		ns		
Data Hold Time	t EHDX	tон	0		ns		
Address Hold Time	telax	tан	45		ns		
FWE# Hold From FWE# High	tенwн	twн	0		ns		
FCS# Pulse Width High	tehel	tсрн	20		ns		
Duration Of Byte Programming Operation (1)	twhwh1			300	μs		
Duration Of Erase Operation (2)	twhwh2			15	sec		
Read Recovery Before Write	tghel		0		ns		
Chip Programming Time				11	sec		
Chip Erase Time (3)				64	sec		


NOTES:

1. Typical value for t_{WHWH1} is 7µs.

2. Typical value for twHWH1 is 1sec.


3. Typical value for Chip Erase Time is 8sec.

WHITE ELECTRONIC DESIGNS

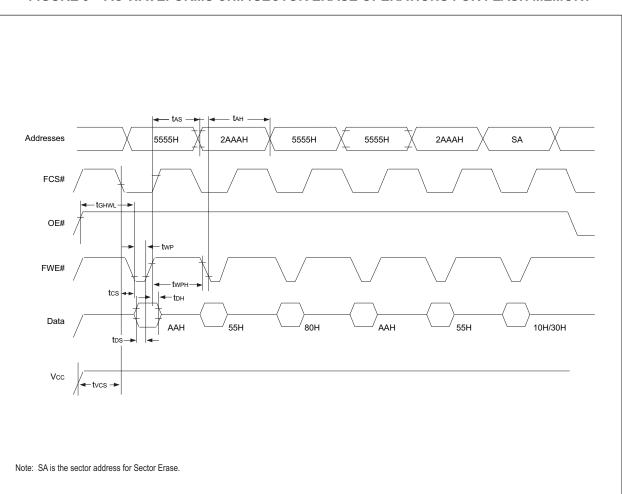

FIGURE 7 – AC WAVEFORMS FOR FLASH MEMORY READ OPERATIONS

FIGURE 8 - WRITE/ERASE/PROGRAM OPERATION, FLASH MEMORY FWE# CONTROLLED

^{5.} Figure indicates last two bus cycles of four bus cycle sequence.

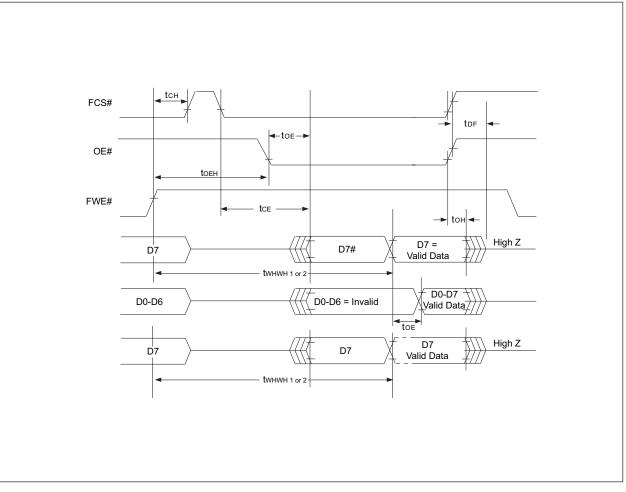

WHITE ELECTRONIC DESIGNS

FIGURE 9 – AC WAVEFORMS CHIP/SECTOR ERASE OPERATIONS FOR FLASH MEMORY

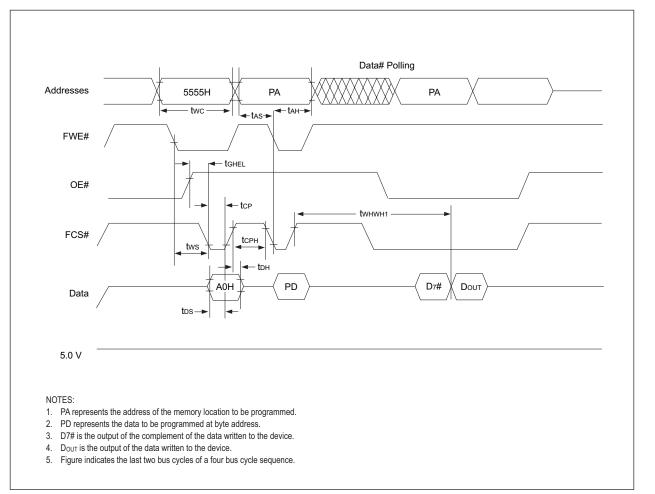
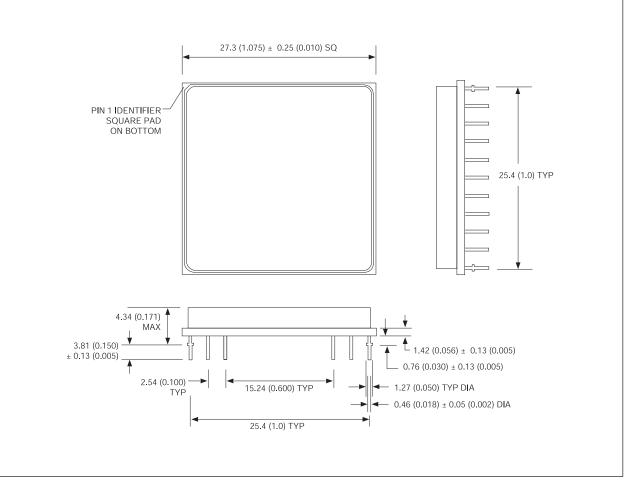
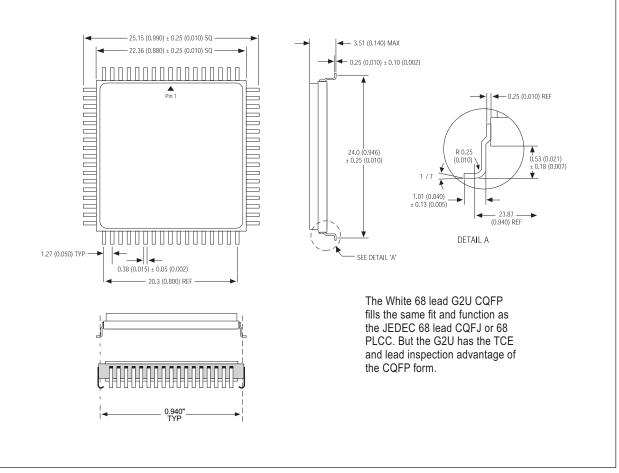


FIGURE 10 – AC WAVEFORMS FOR DATA# POLLING DURING EMBEDDED ALGORITHM OPERATIONS FOR FLASH MEMORY



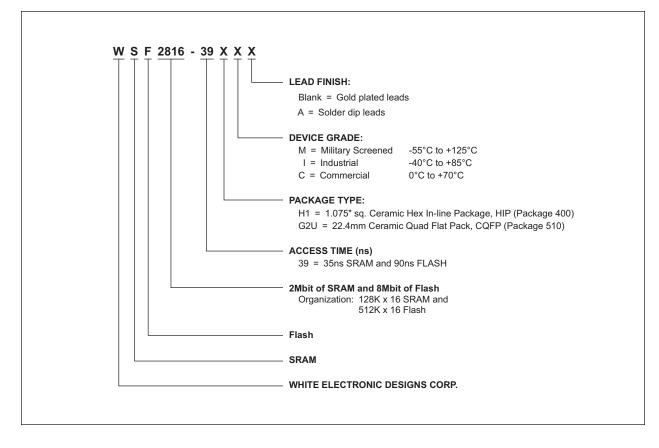
11

FIGURE 11 – WRITE/ERASE/PROGRAM OPERATION FOR FLASH MEMORY, CS# CONTROLLED



ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

WHITE ELECTRONIC DESIGNS



ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

ORDERING INFORMATION

