Video Switch for Dual SCART Connectors

General Description

The MAX7457 4-channel video switch is ideal for antialiasing and DAC-smoothing video applications or wherever analog video is reconstructed from a digital data stream such as cable/satellite/terrestrial set-top boxes (STBs), DVD players, hard disk recorders (HDRs), and personal video recorders (PVRs). The MAX7457 filters and buffers CVBS and RGB video signals, making it ideal for dual SCART (peritelevision) STBs with an auxillary CVBS input. The MAX7457 operates from a single +5 V supply and has a flat passband out to 5 MHz with a stopband attenuation of 43 dB at 27 MHz , making it ideal for NTSC, PAL, and standard-definition digital TV (SDTV) video systems
The MAX7457 output buffers have a fixed gain of +6 dB and are capable of driving two standard 150Ω video loads. The channel for CVBS video has high-frequency boost circuitry that enhances picture sharpness with up to +1.2 dB of gain boost without degradation in the stopband. The video output drivers can be disabled by an external control input.
The MAX7457 is available in a 16 -pin, $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times$ 0.8 mm TQFN package, and is specified over the extended $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications

STBs/HDRs
Game Consoles
Desktop Video Editors

DVD Players
Digital VCRs

- 4-Channel Video Filter/Buffer for RGB and CVBS Signals with Auxiliary Input
- Allows Auxiliary Input for CVBS Video LoopThrough Applications
- Filter Response Ideal for NTSC, PAL, and Interlaced SDTV Video Signals
- 43dB (typ) Stopband Attenuation at 27 MHz
$\pm \pm 0.75 \mathrm{~dB}$ (max) Passband Ripple Out to 5 MHz
- Blanking Level Voltage on Cable <1V
- Each Channel Drives Two 150Ω Video Loads
- +5V Single-Supply Operation
- Available in $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.8 \mathrm{~mm}, 16-\mathrm{Pin}$ TQFN

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX7457ETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	T1655-2

*EP = Exposed pad.

Pin Configuration appears at end of data sheet.

Video Switch for Dual SCART Connectors

ABSOLUTE MAXIMUM RATINGS

INA1, INA2, INB, INC, IND to GND-0.3V to (VCC +0.3 V) OUTA, OUTB, OUTC, OUTD to GND-0.3V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$) SELA, DISABLE to GND-0.3V to (VCC +0.3 V) Maximum Current into Any Pin Except Vcc and GND $\pm 50 \mathrm{~mA}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 16-Pin TQFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). .1666 .7 mW	

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature \qquad
ead Temperature (soldering, 10 s) - .

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0\right.$ to $20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=75 \Omega$ to GND for DC -coupled load, $\mathrm{R}_{\mathrm{L}}=75 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$ for AC -coupled load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Passband Flatness		$f=100 \mathrm{kHz} \text { to } 5 \mathrm{MHz},$ relative to 100 kHz	Channel INA_	+0.9	+1.2	+1.5	dB
			Channels INB, INC, IND	-0.75	+0.15	+0.75	
Stopband Attenuation	ASB	$\mathrm{f} \geq 27 \mathrm{MHz}$		40	43		dB
Differential Gain	dG	5-step modulated staircase			0.15	0.5	\%
Differential Phase	d θ	5-step modulated staircase			0.15	0.5	Degrees
Signal-to-Noise Ratio	SNR	Peak signal (2VP-P) to RMS noise, $f=100 \mathrm{~Hz}$ to 50 MHz			80		dB
Group Delay Deviation	Δt^{\prime}	Deviation from 100 kHz to 4.1 MHz	Channel INA_		17	30	ns
			Channels INB, INC, IND		11	20	
Line-Time Distortion	HDIST	18 $\mu \mathrm{s}, 100$ IRE bar				0.3	\%
Field-Time Distortion	VDIST	130 lines, 18 $\mu \mathrm{s}$, 100 IRE bar				0.5	\%
Clamp Settling Time	tCLAMP	To $\pm 1 \%$			300		Lines
Output DC Clamp Level		Channel INA_		0.6	0.9	1.1	V
		Channel INB, INC, IND		1.1	1.5	1.8	
Low-Frequency Gain Accuracy	AV	$\mathrm{f}=100 \mathrm{kHz}$, relative to gain of +6 dB		-3		+3	\%
Low-Frequency Gain Matching	Av(MATCH)	Low-frequency channel-to-channel matching, $f=100 \mathrm{kHz}$				4	\%
Group Delay Matching	$\mathrm{tg}_{\text {(MATCH }}$)	Low-frequency channel-to-channel matching, $f=100 \mathrm{kHz}$			2		ns
Channel-to-Channel Crosstalk	X ${ }_{\text {TALK }}$	$\mathrm{f}=100 \mathrm{kHz}$ to 3.58 MHz			-60		dB
Disabled Output Impedance	ZDISABLE	At 5MHz			2		$\mathrm{k} \Omega$
Output Short-Circuit Current	ISC	OUT_ shorted to GND or VCC			70		mA

Video Switch for Dual SCART Connectors

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0$ to $20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=75 \Omega$ to GND for DC -coupled load, $\mathrm{R}_{\mathrm{L}}=75 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$ for AC -coupled load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current	IIN				10	$\mu \mathrm{A}$
Input Dynamic Swing		Channel INA_			1.2	VP-P
		Channels INB, INC, IND			0.9	
Mux Crosstalk		$\mathrm{f}=100 \mathrm{kHz}$ to 4.1 MHz		-60		dB
SUPPLY						
Supply Voltage Range	VCC		4.75		5.25	V
Supply Current	ICC	No load		100	140	mA
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{P}_{-\mathrm{P},} \mathrm{f}=0$ to 3.5 MHz		40		dB
LOGIC INTERFACE						
Logic Input High Voltage	V_{IH}		2.0			V
Logic Input Low Voltage	VIL				0.8	V
Logic Input Current		$\mathrm{V}_{\mathrm{IL}}=0$ (sink), $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$ (source)			± 10	$\mu \mathrm{A}$

