Automotive Current Mode PWM Control Circuit The CS2841B provides all the necessary features to implement off-line fixed frequency current-mode control with a minimum number of external components. The CS2841B (a variation of the CS2843A) is designed specifically for use in automotive operation. The low start threshold voltage of 8.0 V (typ), and the ability to survive 40 V automotive load dump transients are important for automotive subsystem designs. The CS2841 series has a history of quality and reliability in automotive applications. The CS2841B incorporates a precision temperature–controlled oscillator with an internally trimmed discharge current to minimize variations in frequency. Duty–cycles greater than 50% are also possible. On board logic ensures that V_{REF} is stabilized before the output stage is enabled. Ion implant resistors provide tighter control of undervoltage lockout. # **Features** - Optimized for Off-Line Control - Internally Trimmed Temperature Compensated Oscillator - Maximum Duty-Cycle Clamp - V_{REF} Stabilized Before Output Stage Enabled - Low Start-Up Current - Pulse-By-Pulse Current Limiting - Improved Undervoltage Lockout - Double Pulse Suppression - 1.0 % Trimmed Bandgap Reference - High Current Totem Pole Output - Pb-Free Packages are Available* # ON Semiconductor® http://onsemi.com PDIP-8 N SUFFIX CASE 626 SOIC-14 D SUFFIX CASE 751A # PIN CONNECTIONS AND MARKING DIAGRAM CS2841B = Device Code A = Assembly Location WL = Wafer Lot YY, Y = Year WW = Work Week G = Pb-Free Package # **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Figure 1. Block Diagram # **MAXIMUM RATINGS** | Ra | Value | Unit | | |---|--|----------------------|----| | Supply Voltage (Low Impedance Source) | 40 | V | | | Output Current | | ±1.0 | Α | | Output Energy (Capacitive Load) | | 5.0 | μJ | | Analog Inputs (V _{FB} , Sense) | | -0.3 to 5.5 | V | | Error Amp Output Sink Current | | 10 | mA | | Lead Temperature Soldering | Wave Solder (through hole styles only) Note 1
Reflow (SMD styles only) Note 2 | 260 peak
230 peak | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. - 1. 10 seconds max - 2. 60 seconds max above 183°C # ORDERING INFORMATION | Device | Package | Shipping [†] | |---------------|----------------------|-----------------------| | CS2841BEBN8 | PDIP-8 | 50 Units / Rail | | CS2841BEBN8G | PDIP-8
(Pb-Free) | 50 Units / Rail | | CS2841BED14 | SOIC-14 | 55 Units / Rail | | CS2841BED14G | SOIC-14
(Pb-Free) | 55 Units / Rail | | CS2841BEDR14 | SOIC-14 | 2500 / Tape & Reel | | CS2841BEDR14G | SOIC-14
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. $\textbf{ELECTRICAL CHARACTERISTICS} \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F for Triangular Mode, V}_{CC} = 15 \ V \ (\text{Note 3}), \ (-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ R_{T} = 680 \ k\Omega, \ C_{T} = 0.022 \ \mu\text{F}_{T} \mu\text{F}_{T}$ R_T = 10 k Ω , C_T = 3.3 nF for Sawtooth Mode (see Figure 7); unless otherwise specified.) | Characteristic | Test Conditions | Min | Тур | Max | Unit | |------------------------|--|----------------|----------------|----------------|-------------------| | Reference Section | | | | | | | Output Voltage | t Voltage T _J = 25°C, I _{OUT} = 1.0 mA | | 5.0 | 5.1 | V | | Line Regulation | 8.4 ≤ V _{CC} ≤ 16 V | _ | 6.0 | 20 | mV | | Load Regulation | 1.0 ≤ I _{OUT} ≤ 20 mA | _ | 6.0 | 25 | mV | | Temperature Stability | Note 4 | _ | 0.2 | 0.4 | mV/°C | | Total Output Variation | Line, Load, Temp. Note 4 | 4.82 | - | 5.18 | V | | Output Noise Voltage | 10 Hz ≤ f ≤ 10 kHz, T _J = 25°C. Note 4 | _ | 50 | - | μV | | Long Term Stability | T _A = 125°C, 1000 Hrs. Note 4 | _ | 5.0 | 25 | mV | | Output Short Circuit | T _A = 25°C | -30 | -100 | -180 | mA | | Oscillator Section | | | | | | | Initial Accuracy | Sawtooth Mode: $T_J = 25^{\circ}C$. See Figure 7. Sawtooth Mode: $-40^{\circ}C \le T_A \le +85^{\circ}C$ Triangular Mode: $T_J = 25^{\circ}C$. See Figure 7. | 47
44
44 | 52
52
52 | 57
60
60 | kHz
kHz
kHz | | Voltage Stability | 8.4 ≤ V _{CC} ≤ 16 V | _ | 0.2 | 1.0 | % | | Temperature Stability | Sawtooth Mode: $T_{MIN} \le T_A \le T_{MAX}$. Note 4 Triangular Mode: $T_{MIN} \le T_A \le T_{MAX}$. Note 4 | _
_ | 5.0
8.0 | | %
% | | Amplitude | V _{OSC} (Peak to Peak) | _ | 1.7 | _ | V | | Discharge Current | $T_{J} = 25^{\circ}C$ $T_{MIN} \le T_{A} \le T_{MAX}$ | 7.4
7.2 | 8.3 | 9.2
9.4 | mA
mA | | Error Amp Section | | 1 | • | | 1 | | Input Voltage | V _{COMP} = 2.5 V | 2.42 | 2.5 | 2.58 | V | | Input Bias Current | V _{FB} = 0 V | _ | -0.3 | -2.0 | μΑ | | A _{VOL} | 2.0 ≤ V _{OUT} ≤ 4.0 V | 65 | 90 | _ | dB | | Unity Gain Bandwidth | Note 4 | 0.7 | 1.0 | - | MHz | | PSRR | 8.4 V ≤ V _{CC} ≤ 16 V | 60 | 70 | _ | dB | | Output Sink Current | V _{FB} = 2.7 V, V _{COMP} = 1.1 V | 2.0 | 6.0 | - | mA | | Output Source Current | V _{FB} = 2.3 V, V _{COMP} = 5.0 V | -0.5 | -0.8 | - | mA | | V _{OUT} High | V_{FB} = 2.3 V, R_L = 15 k Ω to Ground | 5.0 | 6.0 | _ | V | | V _{OUT} Low | V_{FB} = 2.7 V, R_L = 15 k Ω to V_{REF} | _ | 0.7 | 1.1 | V | | Current Sense Section | | | • | • | | | Gain | Notes 5 and 6 | 2.85 | 3.0 | 3.15 | V/V | | Maximum Input Signal | V _{COMP} = 5.0 V. Note 5 | 0.9 | 1.0 | 1.1 | V | | PSRR | 12 V ≤ V _{CC} ≤ 25 V. Note 5 | _ | 70 | _ | dB | | Input Bias Current | V _{Sense} = 0 V | _ | -2.0 | -10 | μΑ | | | + | 1 | 1 | 1 | + | - 3. Adjust V_{CC} above the start threshold before setting at 15 V 4. These parameters, although guaranteed, are not 100% tested in production - 5. Parameter measured at trip point of latch with V_{FB} = 0 6. Gain defined as: **ELECTRICAL CHARACTERISTICS** ($-40^{\circ}C \le T_A \le 85^{\circ}C$, $R_T = 680$ kΩ, $C_T = 0.022$ μF for Triangular Mode, $V_{CC} = 15$ V (Note 3), $R_T = 10$ kΩ, $C_T = 3.3$ nF for Sawtooth Mode (see Figure 7); unless otherwise specified.) | Characteristic | Test Conditions | Min | Тур | Max | Unit | |---|---|----------|--------------|------------|------| | Output Section | | | | | * | | Output Low Level | I _{SINK} = 20 mA
I _{SINK} = 200 mA | -
- | 0.1
1.5 | 0.4
2.2 | V | | Output High Level | I _{SOURCE} = 20 mA
I _{SOURCE} = 200 mA | 13
12 | 13.5
13.5 | -
- | V | | Rise Time | T _J = 25°C, C _L = 1.0 nF. Note 7 | - | 50 | 150 | ns | | Fall Time $T_J = 25^{\circ}C$, $C_L = 1.0$ nF. Note 7 | | - | 50 | 150 | ns | | Output Leakage Undervoltage Active, V _{OUT} = 0 | | - | -0.01 | -10 | μΑ | | Total Standby Current | | | | | | | Startup Current | - | - | 0.5 | 1.0 | mA | | Operating Supply Current I _{CC} $V_{FB} = V_{Sense} = 0 \text{ V}, R_T = 10 \text{ k}\Omega, C_T = 3.3 \text{ nF}$ | | _ | 11 | 17 | mA | | Undervoltage Lockout Section | | | | | | | Start Threshold | - | 7.6 | 8.0 | 8.4 | V | | Min. Operating Voltage | After Turn On | 7.0 | 7.4 | 7.8 | V | ^{7.} These parameters, although guaranteed, are not 100% tested in production. # PACKAGE PIN DESCRIPTION | PACKA | GE PIN # | | | | |--------|-------------|---------------------|--|--| | PDIP-8 | SOIC-14 | PIN SYMBOL | FUNCTION | | | 1 | 1 | COMP | Error Amp Output, Used to Compensate Error Amplifier | | | 2 | 3 | V _{FB} | Error Amp Inverting Input | | | 3 | 5 | Sense | Noninverting Input to Current Sense Comparator | | | 4 | 7 | OSC | Oscillator Timing Network with Capacitor to Ground, Resistor to V _{REF} | | | 5 | 8 | GND | Ground | | | | 9 | Pwr GND | Output Driver Ground | | | 6 | 10 | V _{OUT} | Output Drive Pin | | | | 11 | V _{CC} Pwr | Output Driver Positive Supply | | | 7 | 12 | V _{CC} | Positive Power Supply | | | 8 | 14 | V _{REF} | Output of 5.0 V Internal Reference | | | | 2, 4, 6, 13 | NC | No Connection | | # TYPICAL PERFORMANCE CHARACTERISTICS Figure 2. Oscillator Frequency vs. C_T Figure 3. Oscillator Duty Cycle vs. R_T Figure 4. Test Circuit # **CIRCUIT DESCRIPTION** # **Undervoltage Lockout** During Undervoltage Lockout (Figure 5), the output driver is biased to a high impedance state. The output should be shunted to ground with a resistor to prevent output leakage current from activating the power switch. Figure 5. Typical Undervoltage Characteristics # **PWM Waveform** To generate the PWM waveform, the control voltage from the error amplifier is compared to a current sense signal representing the peak output inductor current (Figure 6). An increase in V_{CC} causes the inductor current slope to increase, thus reducing the duty cycle. This is an inherent feed—forward characteristic of current mode control, since the control voltage does not have to change during changes of input supply voltage. Figure 6. Timing Diagram for Key CS2841B Parameters When the power supply sees a sudden large output current increase, the control voltage will increase allowing the duty cycle to momentarily increase. Since the duty cycle tends to exceed the maximum allowed to prevent transformer saturation in some power supplies, the internal oscillator waveform provides the maximum duty cycle clamp as programmed by the selection of OSC components. # **Timing Parameters** ### Sawtooth Mode # Triangular Mode Figure 7. Oscillator Timing Network and Parameters # **Setting the Oscillator** Oscillator timing capacitor, C_T , is charged by V_{REF} through R_T and discharged by an internal current source. During the discharge time, the internal clock signal blanks out the output to the Low state, thus providing a user selected maximum duty cycle clamp. Charge and discharge times are determined by the general formulas: $$t_{C} = R_{T}C_{T} ln \left(\frac{V_{REF} - V_{lower}}{V_{REF} - V_{upper}} \right)$$ $$t_{d} = R_{T}C_{T}In \left(\frac{V_{REF} - I_{d}R_{T} - V_{upper}}{V_{REF} - I_{d}R_{T} - V_{lower}} \right)$$ Substituting in typical values for the parameters in the above formulas: $$\begin{array}{l} \text{VREF} = 5.0 \text{ V} \\ \text{Vupper} = 2.7 \text{ V} \\ \text{Vlower} = 1.0 \text{ V} \\ \text{Id} = 8.3 \text{ mA} \\ \text{t}_{\text{C}} \approx 0.5534 \text{RTCT} \end{array}$$ $$t_d = R_T C_T \ln \left(\frac{2.3 - 0.0083 R_T}{4.0 - 0.0083 R_T} \right)$$ The frequency and maximum duty cycle can be determined from the Typical Performance Characteristic graphs. # Grounding High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to GND pin in a single point ground. The transistor and 5.0 k Ω potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to Sense. Figure 8. Flyback Application Figure 9. Boost Application # **PACKAGE THERMAL DATA** | Parame | eter | PDIP-8 | SOIC-14 | Unit | |-----------------|---------|--------|---------|------| | $R_{\theta JC}$ | Typical | 52 | 30 | °C/W | | $R_{\theta JA}$ | Typical | 100 | 125 | °C/W | # **PACKAGE DIMENSIONS** # PDIP-8 CASE 626-05 ISSUE L - NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN - FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR - SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. | _ | | | | | | |-----|----------|--------|-----------|-------|--| | | MILLIN | IETERS | INCHES | | | | DIM | MIN | MAX | MIN | MAX | | | Α | 9.40 | 10.16 | 0.370 | 0.400 | | | В | 6.10 | 6.60 | 0.240 | 0.260 | | | С | 3.94 | 4.45 | 0.155 | 0.175 | | | D | 0.38 | 0.51 | 0.015 | 0.020 | | | F | 1.02 | 1.78 | 0.040 | 0.070 | | | G | 2.54 BSC | | 0.100 BSC | | | | Н | 0.76 | 1.27 | 0.030 | 0.050 | | | J | 0.20 | 0.30 | 0.008 | 0.012 | | | K | 2.92 | 3.43 | 0.115 | 0.135 | | | L | 7.62 BSC | | 0.300 | BSC | | | M | | 10° | | 10° | | | N | 0.76 | 1.01 | 0.030 | 0.040 | | SOIC-14 CASE 751A-03 ISSUE G # NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE. - PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 8.55 | 8.75 | 0.337 | 0.344 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | М | 0 ° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.228 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** ## LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.