# **Current Mode PWM Control Circuit** The CS52843 provides all the necessary features to implement off-line fixed frequency current-mode control with a minimum number of external components. The CS52843 incorporates a new precision temperature–controlled oscillator to minimize variations in frequency. An undervoltage lockout ensures that $V_{REF}$ is stabilized before the output stage is enabled. In the CS52843 turn on is at 8.4 V and turn off at 7.6 V. Other features include low start—up current, pulse—by—pulse current limiting, and a high—current totem pole output for driving capacitive loads, such as gate of a power MOSFET. The output is low in the off state, consistent with N—channel devices. #### **Features** - Optimized for Off-Line Control - Internally Temperature Compensated Oscillator - V<sub>REF</sub> Stabilized before Output Stage is Enabled - Very Low Start-Up Current 300 µA (typ) - Pulse-by-Pulse Current Limiting - Improved Undervoltage Lockout - Double Pulse Suppression - 2.0% 5.0 Volt Reference - High Current Totem Pole Output #### ON Semiconductor™ http://onsemi.com SO-8 D SUFFIX CASE 751 SO-14 D SUFFIX CASE 751A ## PIN CONNECTIONS AND MARKING DIAGRAMS A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week #### **ORDERING INFORMATION** | Device | Package | Shipping | |--------------|---------|------------------| | CS52843ED8 | SO-8 | 95 Units/Rail | | CS52843EDR8 | SO-8 | 2500 Tape & Reel | | CS52843ED14 | SO-14 | 55 Units/Rail | | CS52843EDR14 | SO-14 | 2500 Tape & Ree | 1 Figure 1. Block Diagram #### **MAXIMUM RATINGS\*** | Rating | Value | Unit | |----------------------------------------------------------------|---------------|------| | Supply Voltage (I <sub>CC</sub> < 30 mA) | Self Limiting | - | | Supply Voltage (Low Impedance Source) | 30 | V | | Output Current | ±1.0 | Α | | Output Energy (Capacitive Load) | 5.0 | μJ | | Analog Inputs (V <sub>FB</sub> , V <sub>SENSE</sub> ) | -0.3 to 5.5 | V | | Error Amp Output Sink Current | 10 | mA | | Lead Temperature Soldering: Reflow: (SMD styles only) (Note 1) | 230 peak | °C | <sup>1. 60</sup> second maximum above 183°C. <sup>\*</sup>The maximum package power dissipation must be observed. **ELECTRICAL CHARACTERISTICS** $(-40^{\circ}C \le T_{A} \le 85^{\circ}C; V_{CC} = 15 \text{ V (Note 2.)}; R_{T} = 680 \Omega; C_{T} = 0.022 \mu\text{F for triangle mode, } R_{T} = 10 \text{ k}\Omega; C_{T} = 3.3 \text{ nF sawtooth mode; unless otherwise specified.)}$ | Parameter | Test Conditions | | Тур | Max | Unit | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|------------|------------|------------| | Reference Section | | | l | l | | | Output Voltage T <sub>J</sub> = 25°C, I <sub>REF</sub> = 1.0 mA | | 4.9 | 5.0 | 5.1 | V | | Line Regulation | 12 ≤[V <sub>CC</sub> ≤ 25 V | _ | 6.0 | 20 | mV | | Load Regulation | 1.0 ≤ I <sub>REF</sub> ≤ 20 mA | _ | 6.0 | 25 | mV | | Temperature Stability | Note 2. | _ | 0.2 | 0.4 | mV/°C | | Total Output Variation | Line, Load, Temp. Note 2. | 4.82 | _ | 5.18 | V | | Output Noise Voltage | 10 Hz ≤ f ≤ 10 kHz, T <sub>J</sub> = 25°C, Note 2. | _ | 50 | - | μV | | Long Term Stability | T <sub>A</sub> = 125°C, 1000 Hrs. Note 2. | - | 5.0 | 25 | mV | | Output Short Circuit | T <sub>A</sub> = 25°C | -30 | -100 | -180 | mA | | Oscillator Section | | | | <u></u> | | | Initial Accuracy | Sawtooth Mode, $T_J = 25^{\circ}C$ , Note 2.<br>Triangle Mode, $T_J = 25^{\circ}C$ | 47<br>44 | 52<br>52 | 57<br>60 | kHz<br>kHz | | Voltage Stability | 12 ≤[V <sub>CC</sub> ≤ 25 V | _ | 0.2 | 1.0 | % | | Temperature Stability | Sawtooth Mode $T_{MIN} \le T_A \le T_{MAX}$<br>Triangle Mode $T_{MIN} \le T_A \le T_{MAX}$ , Note 2. | | 5.0<br>8.0 | - | %<br>% | | Amplitude | V <sub>OSC</sub> (peak to peak) | 6 | 1.7 | _ | V | | Discharge Current | $T_{J} = 25^{\circ}C$ $T_{MIN} \le T_{A} \le T_{MAX}$ | 7.3<br>6.8 | 8.3<br>- | 9.3<br>9.8 | mA<br>mA | | Error Amp Section | 0, 3, | ,0, | | | | | Input Voltage | V <sub>COMP</sub> = 2.5 V | 2.42 | 2.50 | 2.58 | V | | Input Bias Current | V <sub>FB</sub> = 0 V | _ | -0.3 | -2.0 | μΑ | | Avol | 2.0 ≤[V <sub>OUT</sub> ≤ 4.0 V | 65 | 90 | - | dB | | Unity Gain Bandwidth | Note 2. | 0.7 | 1.0 | _ | MHz | | PSRR | 12 ≤[V <sub>CC</sub> ≤ 25 V | 60 | 70 | _ | dB | | Output Sink Current | V <sub>FB</sub> = 2.7 V, V <sub>COMP</sub> = 1.1 V | 2.0 | 6.0 | - | mA | | Output Source Current | $V_{FB} = 2.3 \text{ V}, V_{COMP} = 5.0 \text{ V}$ | -0.5 | -0.8 | _ | mA | | V <sub>OUT</sub> HIGH | $V_{FB}$ = 2.3 V, $R_L$ = 15 k $\Omega$ to GND | 5.0 | 6.0 | - | V | | V <sub>OUT</sub> LOW | $V_{FB}$ = 2.7 V, $R_L$ = 15 k $\Omega$ to $V_{REF}$ | - | 0.7 | 1.1 | V | | <b>Current Sense Section</b> | S', O'. | | | | | | Gain | Notes 3 & 4. | 2.85 | 3.0 | 3.15 | V/V | | Maximum Input Signal | V <sub>COMP</sub> = 5.0 V, Note 3. | 0.9 | 1.0 | 1.1 | V | | PSRR | 12 ≤[V <sub>CC</sub> ≤ 25 V, Note 3. | _ | 70 | - | dB | | Input Bias Current | V <sub>SENSE</sub> = 0 V | - | -2.0 | -10 | μА | | Delay to Output | T <sub>J</sub> = 25°C, Note 2. | - | 150 | 300 | ns | <sup>2.</sup> These parameters, although guaranteed, are not 100% tested in production. 4. Gain defined as: A = $$\frac{\Delta V_{COMP}}{\Delta V_{SENSE}}$$ ; 0 $\leq$ V<sub>SENSE</sub> $\leq$ 0.8 V <sup>3.</sup> Parameter measured at a trip point of latch with $V_{FB}$ = 0. **ELECTRICAL CHARACTERISTICS (continued)** ( $-40^{\circ}C \le T_{A} \le 85^{\circ}C$ ; $V_{CC} = 15 \text{ V (Note 2.)}$ ; $R_{T} = 680 \Omega$ ; $C_{T} \ne 0.022 \mu F$ for triangle mode, $R_{T} = 10 \text{ k}\Omega$ ; $C_{T} \ne 3.3 \text{ nF}$ sawtooth mode; unless otherwise specified.) | Parameter Test Conditions | | | Тур | Max | Unit | |-------------------------------|----------------------------------------------------------------------------------------|----------|--------------|------------|--------| | Output Section | | | | | | | Output Low Level | I <sub>SINK</sub> = 20 mA<br>I <sub>SINK</sub> = 200 mA | | 0.1<br>1.5 | 0.4<br>2.2 | V<br>V | | Output High Level | I <sub>SOURCE</sub> = 20 mA<br>I <sub>SOURCE</sub> = 200 mA | 13<br>12 | 13.5<br>13.5 | -<br>- | V<br>V | | Rise Time | T <sub>J</sub> = 25°C, C <sub>L</sub> = 1.0 nF, Note 5. | - | 50 | 150 | ns | | Fall Time | T <sub>J</sub> = 25°C, C <sub>L</sub> = 1.0 nF, Note 5. | - | 50 | 150 | ns | | Output Leakage | UVLO Active V <sub>OUT</sub> = 0 | - | -0.01 | -10 | μΑ | | Total Standby Current | | | | | | | Start-Up Current | - | | 300 | 500 | μΑ | | Operating Supply Current | $V_{FB} = V_{SENSE} = 0 \text{ V, R}_{T} = 10 \text{ k}\Omega; C_{T} + 3.3 \text{ nF}$ | - | 11 | 17 | mA | | V <sub>CC</sub> Zener Voltage | I <sub>CC</sub> = 25 mA | - | 34 | 0,- | V | | Undervoltage Lockout Section | | | .C) | | | | Start Threshold | - | 7.8 | 8.4 | 9.0 | V | | Min. Operating Voltage | After Turn On | 7.0 | 7.6 | 8.2 | V | <sup>5.</sup> These parameters, although guaranteed, are not 100% tested in production. #### **PACKAGE PIN DESCRIPTION** | Package Lead Number | | | OB SKI OFF | |---------------------|-------------|------------------|-----------------------------------------------------------------------------------| | SO-8 | SO-14 | Lead Symbol | Function | | 1 | 1 | СОМР | Error amp output, used to compensate error amplifier. | | 2 | 3 | V <sub>FB</sub> | Error amp inverting input. | | 3 | 5 | SENSE | Noninverting input to Current Sense Comparator. | | 4 | 7 | OSC | Oscillator timing network with capacitor to ground, resistor to $V_{\text{REF.}}$ | | 5 | 8 | GND | Ground. | | - | 9 | Pwr GND | Output driver ground. | | 6 | 10 | V <sub>оит</sub> | Output drive pin. | | _ | 11 | $V_{CC}$ Pwr | Output driver positive supply. | | 7 | 12 | V <sub>CC</sub> | Positive power suppy. | | 8 | 14 | V <sub>REF</sub> | Output of 5.0 V internal reference. | | _ | 2, 4, 6, 13 | NC | No Connection. | #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 2. Oscillator Frequency vs C<sub>T</sub> Figure 3. Oscillator Duty Cycle vs R<sub>T</sub> CIRCUIT DESCRIPTION Figure 4. Test Circuit Open Loop Laboratory Test Fixture Figure 5. Startup Voltage for the CS52843 #### **Undervoltage Lockout** During Undervoltage Lockout (Figure 5), the output driver is biased to sink minor amounts of current. The output should be shunted to ground with a resistor to prevent activating the power switch with extraneous leakage currents. #### **PWM Waveform** To generate the PWM waveform, the control voltage from the error amplifier is compared to a current sense signal which represents the peak output inductor current (Figure 6). An increase in $V_{CC}$ causes the inductor current slope to increase, thus reducing the duty cycle. This is an inherent feed–forward characteristic of current mode control, since the control voltage does not have to change during changes of input supply voltage. When the power supply sees a sudden large output current increase, the control voltage will increase allowing the duty cycle to momentarily increase. Since the duty cycle tends to exceed the maximum allowed to prevent transformer saturation in some power supplies, the internal oscillator waveform provides the maximum duty cycle clamp as programmed by the selection of oscillator timing components. Figure 6. Timing Diagram #### **Setting the Oscillator** The times $t_c$ and $t_d$ can be determined as follows: $$t_{\text{C}} = R_{T}C_{T}\text{In}\bigg(\frac{V_{REF} - V_{LOWER}}{V_{REF} - V_{UPPER}}\bigg)$$ $$t_d = R_T C_T ln \left( \frac{V_{REF} - I_d R_T V_{LOWER}}{V_{REF} - I_d R_T - V_{UPPER}} \right)$$ Substituting in typical values for the parameters in the above formulas: $$V_{REF} = 5.0 \text{ V}, V_{UPPER} = 2.7 \text{ V},$$ $$V_{LOWER} = 1.0 \text{ V}, I_{d} = 8.3 \text{ mA}$$ then $$t_{\rm C} \approx 0.5534 {\rm RTCT}$$ $$t_{d} = R_{T}C_{T} \ln \left( \frac{2.3 - 0.0083R_{T}}{4.0 - 0.0083R_{T}} \right)$$ For better accuracy $R_T$ should be $\geq 10 \text{ k}\Omega$ . #### Grounding High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to GND in a single point ground. The transistor and 5.0 k $\Omega$ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to Sense. $V_{IN}$ Figure 7. Oscillator Timing Network and Parameters #### PACKAGE DIMENSIONS #### **SO-8 DF SUFFIX** CASE 751-07 **ISSUE W** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD - 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | h | | | | |-----------|-------------|------|-----------|-------| | | MILLIMETERS | | INCHES | | | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 BSC | | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | J | 0.19 | 0.25 | 0.007 | 0.010 | | <u></u> Κ | 0.40 | 1.27 | 0.016 | 0.050 | | M | 0.0 | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | 9 | 5.90 | 6.00 | 0.228 | 0.244 | **ISSUE F** - (OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMAGE. - PECENSIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 8.55 | 8.75 | 0.337 | 0.344 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 BSC | | 0.050 BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.228 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### **PACKAGE THERMAL DATA** | Parai | meter | SO-8 | SO-14 | Unit | |-----------------|---------|------|-------|------| | $R_{\Theta JC}$ | Typical | 45 | 30 | °C/W | | $R_{\Theta JA}$ | Typical | 165 | 125 | °C/W | ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) and the series are injected to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative