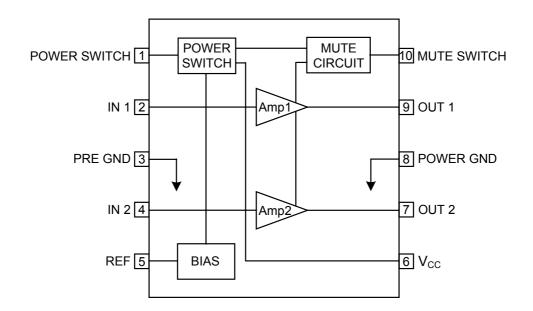

A4533

LINEAR INTEGRATED CIRCUIT

LOW POWER AMPLIFIER FOR HEADPHONE STEREOS

■ FEATURES

- * Low current consumption.
- * 16Ω load drive capability.
- * Excellent reduced voltage characteristics.
- * High power supply ripple rejection.
- * Fewer external components required.
- * High voltage gain.
- * Less harmonic interference in radio band.
- * Built in power switch and muting function.


*Pb-free plating product number: A4533L

■ ORDERING INFORMATION

Order Number		Dookogo	Dooking	
Normal	Lead Free Plating	Package	Packing	
A4533-SM2-R	A4533L-SM2-R	MSOP-10	Tape & Reel	
A4533-SM2-T	A4533L-SM2-T	MSOP-10	Tube	
A4533-R10-R	A4533L-R10-R	SSOP-10	Tape & Reel	
A4533-R10-T	A4533L-R10-T	SSOP-10	Tube	

<u>www.unisonic.com.tw</u> 1 of 4

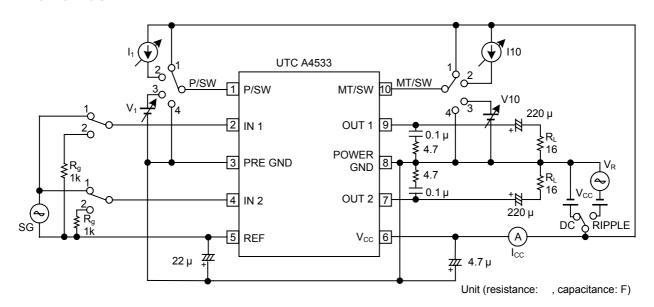
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

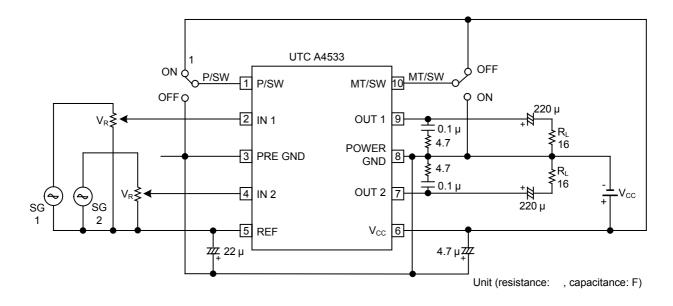
PARAMETER		RATINGS	UNIT
Power Supply Voltage	V_{CC}	4.5	V
Power Dissipation	P_D	300	mW
Junction Temperature	T_J	125	
Operating Temperature	T_{OPR}	0 ~ +70	
Storage Temperature	T_{STG}	-40 ~ +150	

- Note 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. The device is guaranteed to meet performance specification within 0 \sim 70 operating temperature range and assured by design from $-20 \sim 85$.

RECOMMENDED OPERATING CONDITIONS


PARAMETER		RATINGS	UNIT	
Supply Voltage	V_{CC}	3	V	
Operating Voltage Range	V _{OPR}	1.6 ~ 4	V	
Load Resistance	R_L	16 ~ 32	Ω	

■ ELECTRICAL CHARACTERIS (Ta = 25°C, R_L=16Ω, R_g=600Ω, Unless Otherwise specified)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Quiescent Current	I_{Q1}	V _{CC} =2.4V		5.4	10	mA
	I_{Q2}	V _{CC} =4.5V, Mute =GND		1.1	2.0	mA
	I_{Q3}	V_{CC} =4.5V, PS = GND			1.0	μΑ
Voltage Gain	G _{V1}	V _{CC} =2.4V, f=1kHz, V _{OUT} =–10dBm	30	32	34	dB
	G_{V2}	V _{CC} =1.6V, f=1kHz, V _{OUT} =-20dBm	29	32	34	dB
Voltage Gain Difference	ΔG_{V1}	V _{CC} =2.4V, f=1kHz, V _{OUT} =–10dBm			1.0	dB
	ΔG_{V2}	V _{CC} =1.6V, f=1kHz, V _{OUT} =-20dBm			1.0	dB
Total Harmonic Distortion	THD	V _{CC} =2.0V, f=1kHz, P _{OUT} =1mW		0.5	1.5	%
Output Power	P _{OUT}	V _{CC} =3.0V, f=1kHz, THD=10%	20	40		mW
Cross Talk	CT	V _{CC} =2.4V, f=100Hz, Rg=1kW,	40	50		dB
Closs laik		V _{OUT} =–10dB	40			uБ
Ripple Rejection	RR	V_{CC} =1.6V, f=100Hz, Rg=1k Ω ,	45	60		dB
Trippie rejection		V _R =–20dBm, BPF=100Hz				uВ
Output Noise Voltage	eN	V_{CC} =4.5V, Rg=1k Ω ,BPF=20Hz ~ 20kHz		62	100	μV
Power Off Effect	V _{O(OFF)}	V_{CC} =1.6V, f=100Hz, PS = GND,			-80	dB
		V _{IN} =–10dB			-00	uВ
Muting Effect	V _{O(MT)}	V_{CC} =1.6V, f=100Hz, Mute = GND,			-80	dB
		V _{IN} =–10dB			- 00	uВ
Power On Current Sensitivity	I _{PS(ON)}	V _{CC} =1.5V, V _{REF} ≥0.85V		0.05	1.0	μΑ
Power Off Voltage Sensitivity	V _{PS(OFF)}	V _{CC} =1.5V, V _{REF} ≤0.1V	0.5	0.6		V
Muting Off Current Sensitivity	I _{MUTE(OFF)}	V _{CC} =1.5V, V _{REF} ≥0.85V		0.2	1.0	μA
Muting On Voltage Sensitivity	V _{MUTE(ON)}	V _{CC} =1.5V, V _{REF} ≤0.1V	0.5	0.65		V

Note: The quiescent current is represented by the current flowing into pin 6. The respective maximum currents flowing into pin 1 and pin 10 are calculated by (pin voltage -0.5) / 16 [V/k Ω] and the total current increases by these current values.

TEST CIRCUIT

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.