

FAN8621B 12V Spindle Motor and Voice Coil Motor Driver IC

Features

General

- Hysteresis power on reset with delay function
- 5V, 12V supplies monitoring
- Thermal shut down(TSD)
- Programmable precision regulator usging minimal external component
- · Three state control input to reduce number of PINs

Spindle Motor(SPM)

- · ASIC based start-up
- Internal back-EMF processing
- Internal sensorless commutation
- Internal SPM speed control with SFLL(Syncronized Frequency Lock Loop).
- Linear SPM current control
- Selectable Motor Speed (5400/7200 RPM)
- · Soft commutation circuitry to reduce acoustic noise
- · Adjustable brake delay time
- Maximum 2A start-up current capability
- Internal and external spindle brake
- Speed lock indicator output

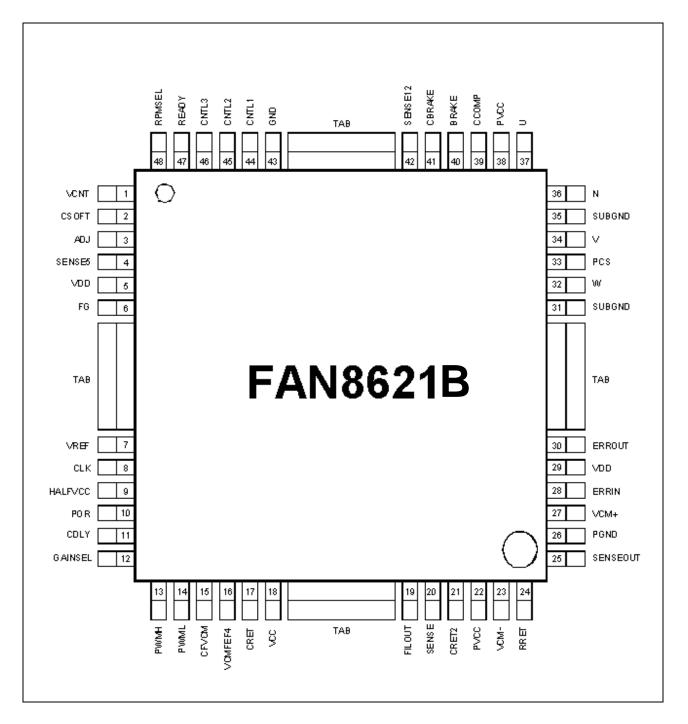
Voice Coil Motor (VCM)

- Intelligent retract (decreased bouncing)
- 1.2A internal VCM power driver
- Selectable transconductance
- 4V precision reference output
- Two PWM input (fine/coarse) for VCM set point

Typical Applications

• Hard disk drive(HDD)

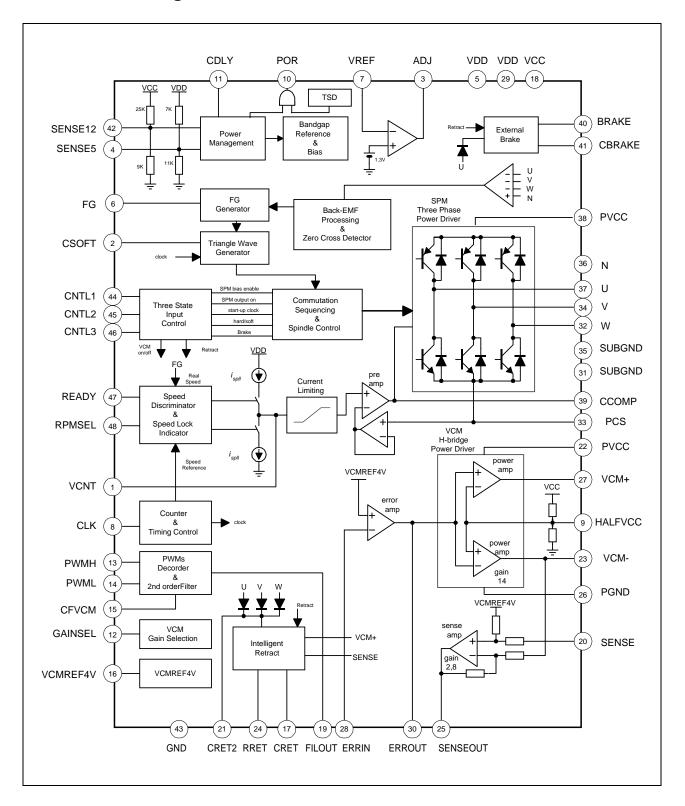
Description


The FAN8621B, is a Bipolar monolithic stand-alone IC, designed for 12V HDD applications. The internal power stage consists of vertical PNP and NPN TRs for both SPM and VCM, thus minimizing voltage drop, and increasing drive capability up to 2A for SPM and 1.2A for VCM. This device includes soft commutation drive to reduce audible noise and intelligent retract function for decreased bouncing.

Ordering Information

Device	Package	Operating Temp.
FAN8621B	48-QFPH-1414	0 ~ 70°C

Pin Assignments

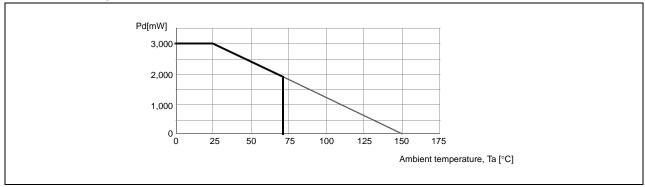

Pin Definitions

Pin Number	Pin Name	ю	Pin Function Description	
1	VCNT	Α	Speed controller output. Range 3.8V to 0.5V	
2	CSOFT	А	Capacitor for soft commutation	
3	ADJ	А	Adjust external regulator voltage (VREF)	
4	SENSE5	А	5V power line sensing	
5	VDD	Р	5V power line	
6	FG	0	Frequency generation for spindle rotation speed. Typically 1.08KHz (5400RPM)	
7	VREF	Р	Regulator voltage output. This voltage is controlled by pin 3 voltage	
8	CLK	I	System clock. Digital clock input as a time reference	
9	HALFVCC	Р	1/2 VCC	
10	POR	0	Power on reset. H : normal, L: power fail	
11	CDLY	А	Define POR delay time	
12	GAINSEL	I	Sense amplifier gain selection. H : High gain (8), L : Low gain (2)	
13	PWMH	I	Coarse PWM input for VCM set point	
14	PWML	I	Fine PWM input for VCM set point	
15	CFVCM	А	Output of PWM inputs to voltage converter	
16	VCMREF4V	Р	4V reference output for VCM	
17	CRET	А	Define retract delay time.	
18	VCC	Р	12V power line	
19	FILOUT	А	Filtered output of PWM inputs. This voltage define VCM set point	
20	SENSE	A	Non-inverting input of differential amplifier for VCM current sensing	
21	CRET2	А	Power for retract when power down	
22	PVCC	Р	12V power line for VCM	
23	VCM-	Α	Negative output terminal of VCM power amplifier	
24	RRET	А	Adjust maximum retract current	
25	SENSEOUT	А	Output of differential amplifier for VCM current sensing	
26	PGND	Р	Ground for VCM	
27	VCM+	Α	positive output terminal of VCM power amplifier	
28	ERRIN	Α	Inverting input of VCM error amplifier	
29	VDD	Р	5V power line	
30	ERROUT	А	Output of VCM error amplifier	
31	SUBGND	Р	Ground for spindle motor	
32	W	Α	Spindle W phase output	

Pin Definitions (Continued)

Pin Number	Pin Name	ю	Pin Function Description	
33	PCS	А	Spindle current sensing.	
34	V	А	Spindle V phase output	
35	SUBGND	Р	Ground for spindle	
36	N	А	Spindle N phase output	
37	U	А	Spindle U phase output	
38	PVCC	Р	12V power line for spindle	
39	CCOMP	A	Current controller output. This Voltage define spindle output current	
40	BRAKE	А	Gating signal for external brake	
41	CBRAKE	A	Charged back-EMF to supply brake power when power down	
42	SENSE12	А	12V power line sensing	
43	GND	Р	Ground	
44	CNTL1	I	Control input for spindle . H: spindle enable, Z: Spindle bias enable, L: brake	
45	CNTL2	I	Start-up clock and soft commutation. H: Start-up clock , L : soft commutation.	
46	CNTL3	I	Control input for VCM. H: VCM enable, Z : VCM disable, L: retract	
47	READY	0	Speed lock indicator when speed is within 0.7% speed error range. H : speed locked, L: unlocked	
48	RPMSEL	I	Target spindle speed selection. L : 5400 rpm, H: 7200 rpm with 5MHz Clock	

Internal Block Diagram


Absolute Maximum Ratings(Ta = 25°C)

Parameter	Symbol	Value	Unit
Supply voltage (signal)	V _{DD}	6.0	V
Supply voltage (signal)	Vcc	15.0	V
Supply voltage (power)	PVcc	15.0	V
Storage Temperature	TSTG	-55 ~ 125	°C
Power dissipation	PD	3.0 ^{note}	W
Maximum Junction Temperature	Tj	150	°C
Operating Ambient Temperature	Тамв	0 ~ 70	°C

NOTE:

- 1. When mounted on $50 \text{mm} \times 50 \text{mm} \times 1 \text{mm}$ PCB (Phenolic resin material)
- 2. Power dissipation is reduced 16mV / $^{\circ}C$ for using above Ta=25 $^{\circ}C.$
- 3. Do not exceed Pd and SOA(Safe Operation Area).

Power Dissipation Curve

Recommanded Operating Coditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage (signal)	V _{DD}	4.5	5.0	5.5	V
Supply voltage (signal)	Vcc	10.8	12.0	13.2	V
Supply voltage (power)	PVcc	10.8	12.0	13.2	V

Electrical Characteristics

Parameter Symbol Condition		Min.	Тур.	Max.	Unit	
POWER SUPPLIES						1
SUPPLY CURRENT						
VDD Line supply current1	IDD1	CNTL1=L,CNTL2=CNTL3=Z (brake)	80-	100	120	mA
VDD Line supply current2	IDD2	CNTL1= CNTL2 =CNTL3=Z (SPM bias enable)		35	45	mA
VDD Line supply current3	IDD3	CNTL1=CNTL3=H,CNTL2=Z (SPM,VCM enable)	25	35	45	mA
VDD Line supply current4	IDD4	CNTL1=CNTL2=Z,CNTL3= L (retract)	25	35	45	mA
VCC Line supply current1	ICC1	CNTL1=L,CNTL2=CNTL3=Z (brake)	2	7	12	mA
VCC Line supply current2	Icc2	CNTL1= CNTL2 =CNTL3=Z (SPM bias enable)	4	9	15	mA
VCC Line supply current3	Іссз	CNTL1=CNTL3=H,CNTL2=Z (SPM,VCM enable)	10	20	60	mA
VCC Line supply current4	ICC4	CNTL1=CNTL2=Z,CNTL3=L (retract)	12	19	25	mA
SUPPLY MONITOR						
Threshold voltage1 for VCC	Vth12A	Vcc=sweep,Vdd=5V	9.05	9.40	9.75	V
Threshold voltage2 for VCC	Vth12b	Vcc=sweep,Vdd=5V	8.75	9.10	9.45	V
Hysteresis on VCCcomparator	VHYS12	Vcc=sweep,VDD=5V	0.15	0.3	0.45	V
Threshold voltage1 for VDD	Vth5a	Vcc=12V,Vdd=sweep	3.45	3.90	4.15	V
Threshold voltage2 for VDD	Vth5b	Vcc=12V,Vdd=sweep	3.30	3.75	4.00	V
Hysteresis on V comparator	VHYS5	Vcc=12V,Vdd=sweep	0.08	0.15	0.23	V
POWER ON RESET GENERA	TOR					
Charging current for POR cap	ICPOR		-18.0	-14	-10	μΑ
POR threshold voltage	VTHPOR		1.1	1.3	1.5	V
Output high voltage	Vporh	Vcc = 12V, Vdd= 5V, POR output current is 1mA	4.5	-	Vdd	V
Output low voltage	VPORL	Vcc = 12V, VDD= 5V, POR output current is 1mA	0	-	0.5	V
CONTROL INPUTs(CNTL1,CNTL2,CNTL3)						
Control input low voltage	Vctl	CNTL1=CNTL2=CNTL3=sweep	0.8	1.3	1.7	V
Control input high voltage	Vстн	CNTL1=CNTL2=CNTL3=sweep	1.85	2.3	2.75	V
Control input low current	Істі	CNTL1=CNTL2=CNTL3=sweep	-290	-200	-110	μΑ
Control input high current	Істн	CNTL1=CNTL2=CNTL3=sweep	55	110	190	μA

Electrical Characteristics (Contnued)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SPINDLE MOTOR (SPM)						-
FG FREQUENCY GENERATO	R					
FG frequency	FFG	CLK=5MHz,RPMSEL=L (5400 RPM)	0.97	1.08	1.18	KHz
FG duty	DFG	FFG = 1.08KHz	45	50	50	%
FG output high voltage	Vfgh	FG output current is 1mA	4.5	-	Vdd	V
FG output low voltage	VFGL	FG output current is 1mA	-	-	0.5	V
READY SIGNAL GENERATIO	N					
READY high output	Vrdh	CNTL1=H,within ±0.7% motor speed error,	4.5	-	VDD	V
READY low output	Vrdl	READY output current is 1mA	-	-	0.5	V
SINDLE OUTPUT SATURATIO	N VOLTA	GE	•			
U Saturation voltage upper	Vsuu	I∪=1A	0.2	0.6	1.0	V
VSaturation voltage upper	Vsvu	Iv=1A	0.2	0.6	1.0	V
W Saturation voltage upper	Vswu	Iw=1A	0.2	0.6	1.0	V
U Saturation voltage lower	VSUL	I∪=1A	0.2	0.4	0.8	V
V Saturation voltage lower	Vsvl	Iv=1A	0.2	0.4	0.8	V
W Saturation voltage lower	Vswl	Iw=1A	0.2	0.4	0.8	V
RPMSELECT INPUT	I					•
RPMSEL threshold voltage	Vrph	-	1.1	1.5	1.7	V
RPMSEL input high current	Irphi	-	60	91	110	μΑ
RPMSEL input low current	Irplo	-	-5	0	5	μΑ
SPEED CONTROLLER					•	•
Speed controller high voltage	VCNTH	-	3.5	3.8	4.2	V
Speed controller low voltage	VCNTL	-	-	-	0.5	V
High voltage of linear range	Vlimith	-	3.15	3.5	3.85	V
Low voltage of linear range	Vlimitl	-	1.15	1.5	1.85	V
F/I converter charge current	ISPLLC	-	-70	-50	-40	μΑ
F/I converter discharge current	ISPLLD	-	40	52	70	μΑ
Transeconductance gain of SPM	GMspm	Rpcs=0.33Ω	0.6	0.8	1.0	-
CURRENT LIMITTER					•	•
Limit voltage of current amp	VLIMIT1	$RPCS = 0.33\Omega$	-	0.57	-	V
Limit voltage of current amp	VLIMIT2	Rpcs = 0.33Ω	-	0	-	V
Equivalent output resistance	Rcc	-	-	20	-	KΩ
EXTERNAL REGULATOR			•		•	
Regulator output voltage	Vreg	VADJ(pin3) = 1.3V	-	3.3	-	V
Regulator line regulation	RLINE	-	-	-	2.0	%
Regulator load regulation	RLOAD	Io= 500mA	-	-	2.0	%

Electrical Characteristics (Contnued)

Parameter	Parameter Symbol Condition		Min.	Тур.	Max.	Unit	
SPINDLE MOTOR (Continued)				•	•		
BRAKE							
Cbrake output voltage	VBC	-	11	11.3	11.8	V	
Brake output high voltage	Vвн	-	11	_	_	V	
Brake output low voltage	Vbl	-	-	-	0.5	V	
SOFT COMMUTATION				•			
Soft commutation high voltage	VSOFTH	-	3.1	-	3.7	V	
Soft commutation low voltage	VSOFTL	-	1.4	1.7	2.0	V	
Discharging current	ISOFTC	-	30	45	60	μΑ	
Charging current	ISOFTD	-	-60	-45	-30	μΑ	
DRIVE OUTPUTS (U,V,W)							
Total voltage Drop	Vdrops	IMOTOR = 1A	-	-	1.8	V	
Leakage current	ILEAKS	-	-10	0	10	μΑ	
VOICE COIL MOTOR CIRCUIT(VCM)			•			
PWM INPUTS							
PWMH/PWML high input voltage	Vpwmh	-	2.8	-	-	V	
PWMH/PWML low input voltage	VPWML	-	-	-	2.2	V	
PWMH charge/discharge current	Ірумн	-	650	670	690	μΑ	
PWML charge/discharge current	PWML	-	10	10.5	11	μA	
PWM current ratio	IRATIO	IPWMH/IPWML	63	64	65		
Internal resister	RFVCM	-	-	3	-	kΩ	
VCN PWM FILTER							
Maximum phase shift	DF	Measure at 500Hz, CCFVCM = 1nF	-	-	-2	deg	
Cut-off frequency	Fco	-	-	100	-	KHz	
Attenuation at 1MHz	FITER	-	-	70	-	dB	
Filter output voltage1	VCVCM1	PWMH=PWML=0%	5.6	6.00	6.40	V	
Filter output voltage2	VCVCM2	PWMH=PWML=50%	3.8	4.0	4.2	V	
Filter output voltage3	V сvсмз	PWMH=PWML=100%	1.6	2	2.4	V	
VCM REFERENCE							
VCM reference voltage 4V	VREF4	CNTL3 = 5V, VREF4V output current=1mA	3.8	4	4.2	V	
VCM reference voltage 1/2 Vcc	VREF6	HALFVCC output current =1µA	5.9	6.0	6.1	V	

Electrical Characteristics (Contnued)

Parameter	Symbol	ool Condition		Тур.	Max.	Unit
SENSE AMPLIFIER				1		
Amp high output voltage	Vsoн	-	10.8	-	-	V
Amp low output voltage	VSOL	-	-	-	1.2	V
Input offset voltage	Voss	-	-15	0	15	mV
Short circuit current	Issc	-	10	-	-	mA
Unity gain bandwidth	Bgs	-	-	2	-	MHz
Voltage gain 1	AVS1	GAINSEL : L	-	18	-	dB
Voltage gain 2	AVS2	GAINSEL : H	-	6	-	dB
ERROR AMPLIFIER				ł		•
Amp high output voltage	VEOH	-	10.8	-	-	V
Amp low output voltage	VEOL	-	-	-	1.2	V
Input offset voltage	Vose	-	-15	0	15	mV
Open loop gain	AVE	-	-	80	-	dB
Unity gain bandwidth	Bge	-	-	2	-	MHz
Short circuit current	ISSE	-	8	-	-	mA
POWER AMPLIFIER			1	1		
Output high voltage	Vрон	-	11.5	-	-	V
Output low voltage	VPOL	-	-	-	0.5	V
Input offset voltage	Vosp	-	-15	0	15	mV
Gain	Аро	-	21.2	22	23.8	dB
Unity gain bandwidth	Bgp	-	-	2	-	MHz
Total voltage Drop	Vdropv	when VCM current is 0.7A	-	-	1.5	V
Leakage current	ILEAKV	-	-20	0	20	μA
VCM AMP TOTAL						
VCM offset current	V vcmos	PWMH=PWML=50% Duty	-20	0	20	mA
VCM transconductance low gain	GМ∨н	GAINSEL = H, sense resister is 1Ω	0.05	0.12	0.14	A/V
VCM transconductance high gain	GM∨L	GAINSEL = L, sense resister is 1Ω	0.35	0.45	0.55	A/V
RETRACT FUNCTION			•	•	•	
Min operating voltage of CRET2	VCRET2	-	2.0	-	-	V
Cret charge current	ICRET	-	-70	-85	-100	μA
Max. retract sink current	IRCT	-	-	125	-	mA
Retract reference voltage	Vret	-	0.75	0.9	1.05	V
Retract current limit resister	Riret	-	-	3	-	KΩ
Leakage current of output TR	ILRET	-	-10	0	10	μΑ
Sink saturation voltage	VRTSAT	-	-	0.4	0.7	V
THERMAL SHUT DOWN			•	•	•	
Operating temperature	Ttsd	-	135	150	165	°C
Thermal hystereis	THYS	-	20	30	40	°C

Application Informations

General

The FAN8621B is a stand alone combination chip consisting of Spindle Motor (SPM) and Voice Coil Motor (VCM)circuit for HDD applications. The speed control of SPM is achieved by internal Synchronous Phase Locked Loop (SPLL). The FAN8621B supplies adjustable regulated power with external component and signals READY indicating SPM is locked within some speed range (typically $\pm 0.7\%$ speed error). Current set point is applied by two PWM signals and VCM current is monitored by external sense resistor. VCM circuit generates 4 voltage references for testing. Fig.1 shows overall interfacing of FAN8621B with external and HDD motors

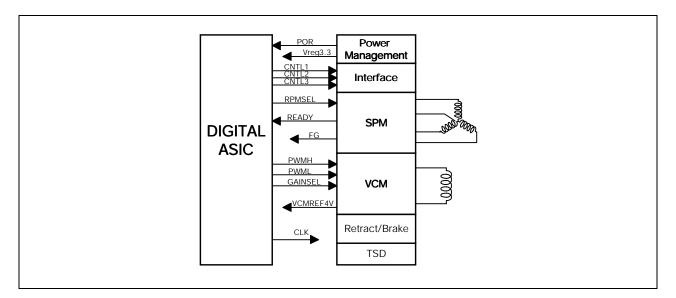


Figure 1. Overall Interfacing of the FAN8621B

The control signals have three status and their function is summarized as follows;

Signals	Pin Status	Н	Z	L
CNTL1	SPM	enable ⁽¹⁾	bias enable	disable
	Brake	disable	disable	enable
CNTL2	Commutation	hard	Hard	soft
	Start Clock	high ⁽²⁾	low ⁽²⁾	-
CNTL3	VCM	enable	disable	disable
	Retract	disable	disable	enable
GAINSEL	Start-up hold	normal	normal	hold ⁽³⁾
	Sense Amp gain	2	2	8

Table 1. Control PIN function

Notes:

- 1. SPM bias + SPM Output Driver enable
- 2. Makes SPM Open Loop (Start-up) Commutation Signal
- 3. Test Only when READY is low

Spindle Motor Driver

The spindle motor driver has two operating modes : hard commutation in start-up and acceleration mode and soft commutation in steady state to reduce acoustic noise.

Start-up and Acceleration

To spin up the motor, open mode start-up clock must be fed to CNTL2 pin in range 20 ~ 200Hz depending on number of platter and motor RPM. This HIGH and OPEN signal commutates motor current in turn while back-EMF comparator checks back-EMF level. When the back-EMF detects motor position, then operating mode is changed from start-up mode to acceleration mode. Also internal commutation logic starts sensorless commutation.

Speed Control

Spindle motor speed is defined by system clock and RPMSEL (pin48). For your reference, see table2

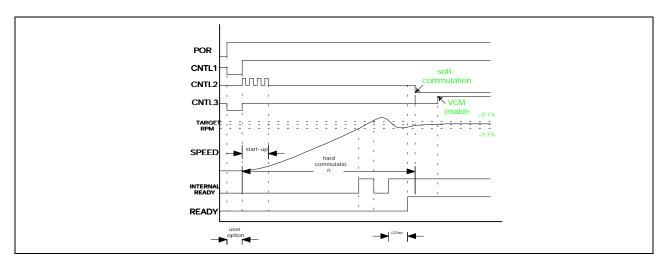


Figure 2. Typical Control Sequence of the FAN8621B

Speed and rotor position of spindle motor is measured by back-EMFs. Back-EMF comparator detects zero crossing point (ZCP) of unexcited phase back-EMF. The output frequency of comparator multiplied by 3 represents motor speed FG (pin6). FG frequency is calculated as follows

 $FG = motor RPM/60 \times pole number/2 \times phase number$

Pin	Value System clo (CLK, pin	
5400 rpm	5MHz	L
7200 rpm		Н
3600rpm	3.333MH;	L
4800rpm	3.333IVIT/	۲ H

For example, 8 pole, three phase 5400 rpm motor,

 $f_{FG}=5400~/~60\times8~/~2\times3=1080Hz$

The spindle motor speed is controlled by SPLL which consists of Synchronous F/I converter , loop filter , and inner current control loop. F/I converter compares RPM reference time with 12 FG time one rotation of spindle for 8 pole motor. The time difference is converted into charge/discharge current source, and fed to loop filter consisting of external RC network. Loop filter acts ad speed controller and it's output becomes spindle output current set point. If spindle motor speed is greater than target speed, switch s2 is turned on, thus decreasing output voltage of loop filter. Current limiting during start-up is achieved by sensing the voltage across the sense resistor connected PCS (pin 33). This limit the loop filer output. The output of loof filter is compared with internal 2.5V reference. If the difference is over 0.75V, the output is limited and scaled down. When the output of loof filter is 0.4V when the output of loof filter is 0.4V when the output of loof filter is over 3.25V. So spindle output current is linearly controlled by level shifted current set point driving high side vertical PNP TR of spindle output driver. Overall concept of SPM speed control is shown Figure3.

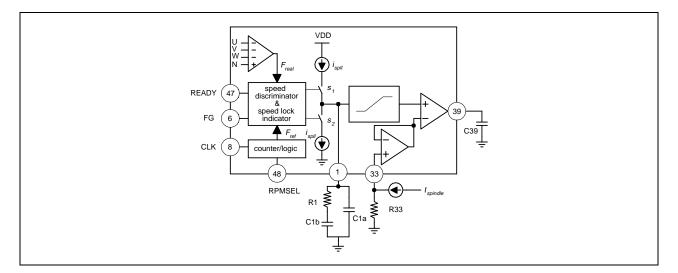


Figure 3. Speed Control of SPM

Indirect Rotor Position Sensing and Commutation

The back-EMF comparator detects the instant at which the back-EMF in the unexcited phase cross as zero. The commutation timing and sequencing for driver outputs is determined by internal commutation logic based on back-EMF ZCP (zero crossing point). Commutation is initiated in advance of ZCP, 30° (electrical) for hard commutation and 1° for soft commutation, respectively. In BLDC motor with trapezoidal type back-EMF, phase current waveforms look like step wave, which generates audible noise. In soft commutation mode (CNTL2 pin45 is LOW), the two phase currents overlap with some current slope. This slope is determined by internal PWM pattern and external capacitor, CSOFT. The soft commutation using current slope of the motor reduce acoustic noise and voltage spark which is generated on the motor coil at the commutation.

Spindle Output Driver

Spindle Output driver contains vertical PNP TR for high side and NPN TR for low side. For one commutation period, PNP TR is controlled linearly by the difference between the current set point VCNT(pin1) and sensed current PCS (pin33), while NPN TR is fully turned on. This scheme provides low voltage drop in linear current control application. The total voltage drop is about 1.8V in 2A current rating. Maximum spindle current is defined as follows;

$$lspindle(max) = \frac{0.57V}{R33 + Rmetal}$$

Where Rmetal is internal metal resistance(typically $50m\Omega$). If R33 is $150m\Omega$, the maximum spindle current is 2A.

Spindle Brake

There are two braking modes; internal and external braking. Spindle is braked when CNTL1 (pin44) is LOW by turning all low side driver on. In case of power failure, brake power is supplied by charged capacitor connected CBRAKE (pin41). Gate signal for two external MOSFET is issued from BRAKE (pin40) with time delay, which is defined by internal resistor (2.8M) and external capacitor.

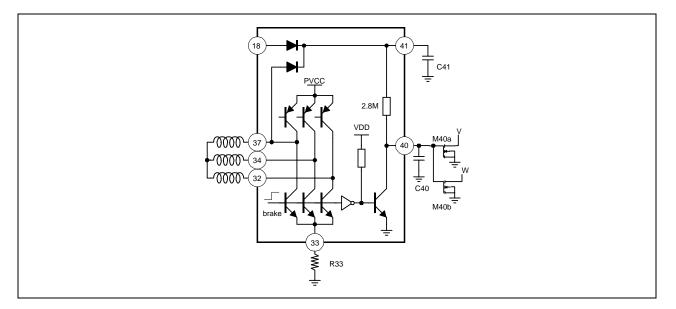


Figure 4. Brake Function Block

Voice Coil Motor Driver

VCM Current Set Point

VCM current set point is defined by two PWM signals. External capacitor connected CFVCM (pin15) is charged and/or discharged depending on status of PWM signals. The voltage, level shifted by 4V, is filtered by an internal 2-nd order filter and converted into DC voltage, FILOUT (pin19) ranging from VCMREF4V+2V to VCMREF4V-2V. The cutoff frequency of the 2nd order filter is about 100KHz, so the PWM frequency must be grater than 100KHz. For more resolution of VCM current set point, the value of two internal current sources for PWMH and PWML is not equal. The weight is 64, so it is good that frequency of PWMH is different that of PWML. When PWM signal is LOW, CFVCM (pin15) voltage increases This voltage is limited by internal 4V reference and resistor, RFVCM.

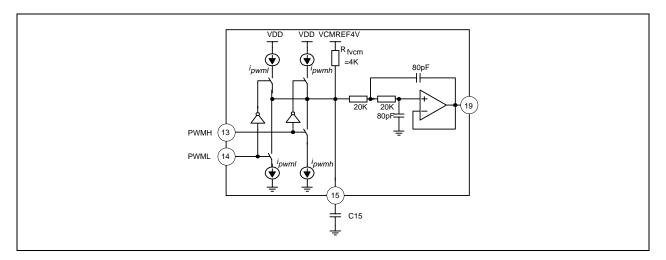


Figure 5. Current Set Point with PWMs

Sense Amplifier

Current sense amplifier amplifies the differential voltage across the sense resistor which is in series with VCM coil. This amplified voltage is level shifted by VCMREF4V. The amplifier gain is set to 2 or 8 depending on GAINSEL. The output of the current sense amplifier is available at SENSEOUT(pin25).

VCM Current Loop Error Amplifier

The inverting input of error amplifier is summing point of VCM current set point (FILOUT) and actual VCM current (SENSE-OUT). The output of error amplifier is proportional to the dynamically compensated voltage difference between FILOUT and SENSEOUT. This output voltage is level shifted to VCMREF4V via connecting non-inverting input of error amplifier internally to VCMREF4V. The dynamic compensation is achieved by external RC network connected to ERRIN (pin28) and ERROUT (pin30)

VCM Power Amplifier

The VCM power amplifier is a linear H-bridge type power driver consist of two NPN TR and two vertical PNP TR to reduce voltage drop. Total voltage drop is 1.5V at 0.7A. The differential gain of power amplifier is 14.

If open loop gain of power and error amplifier is very large, the overall DC gain of VCM driver is calculated as follow

$$Gm \ = \ \frac{R25}{R19} \cdot \frac{1}{R20 + Rmetal(VCM)} \cdot \frac{1}{A_{VS}}$$

where R20 is VCM current sense resistor and Avs is gain of sense amplifier. Rmetal(VCM) is internal metal resistance(typically 0.05ohm). If R25 is equal to R19, R20 = 1Ω , and R_{metal}(VCM) = 0, then overall DC gain is determined by the gain of sense amplifier. For Example, GAINSEL is low,

$$Gm = \frac{1}{A_{VS}} = \frac{1}{8} = 0.125$$

And if GAINSEL is high, then

$$Gm = \frac{1}{A_{VS}} = \frac{1}{2} = 0.5$$

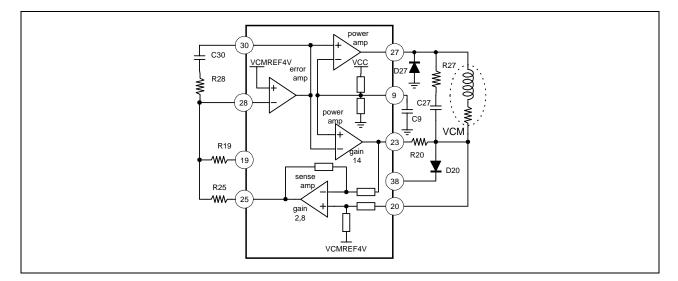
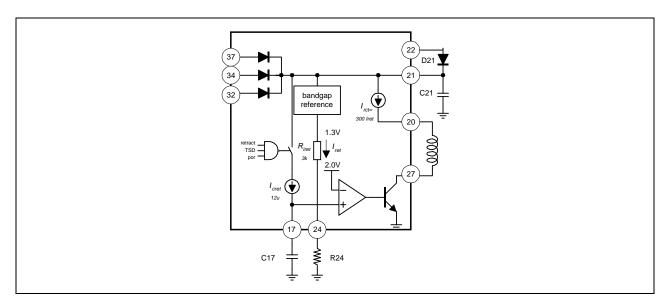



Figure 6. Current Control of VCM

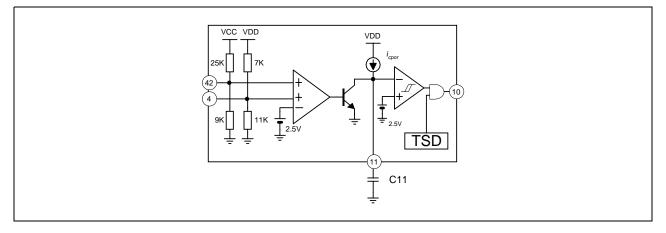
VCM Retract

Power fail condition or when VCM retract command is issued on CNTL3 (pin46) LOW, retract circuit is activated. The retract current is limited by internal and external resistor connected RRET (pin24) and retract delay time is adjusted by external capacitor connected CRET (pin 17). The voltage on CRET2 (pin21) charged by spindle back-EMF serves as retract power.

Figure 7. Retract Function Block

Retract delay time and maximum retract current is defined as follows;

$$T_{retdly} = C17 \cdot \frac{1.25}{I_{cret}}$$
$$I_{rct(max)} = 300 \cdot I_{ret} = 300 \cdot \frac{2.0}{3K + R24}$$


Power Management

Supplies Monitoring and Reference

The voltage reference circuit generates precision 1.3V volt reference, other voltage and current reference. Precision low voltage monitor circuitry senses 5V, 12V supplies. These supplies are individually divided down by resistor divider and then compared with internal 2.5V reference to determine the set-point low voltage condition. Low voltage condition can be changed by adding external resistor on SENSE5 (pin4), SENSE12 (42).

Power On Reset (POR)

When low voltage is detected, POR (pin10) is lowered immediately and fed to external controller. The retract and braking sequence is started. If low voltage condition is removed, the POR becomes high with delay. This time delay is based on charging of the CDLY (pin11) capacitor with internal current source.

Figure 8. Power Line Sensing and POR

POR delay time is calculated by following formula

$$T_{dly} = C11 \cdot \frac{2.5}{I_{cpor}}$$

Regulator

An external passive element and two resistors generate regulated 3.3V supply suitable for external digital logic operating at the reduced voltage. Regulator output voltage is defined by resistor divider

$$V_{reg} = 1.3 \left(1 + \frac{R3a}{R3b} \right)$$

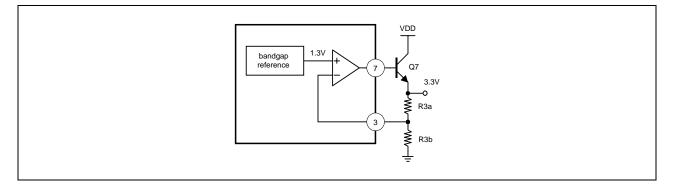
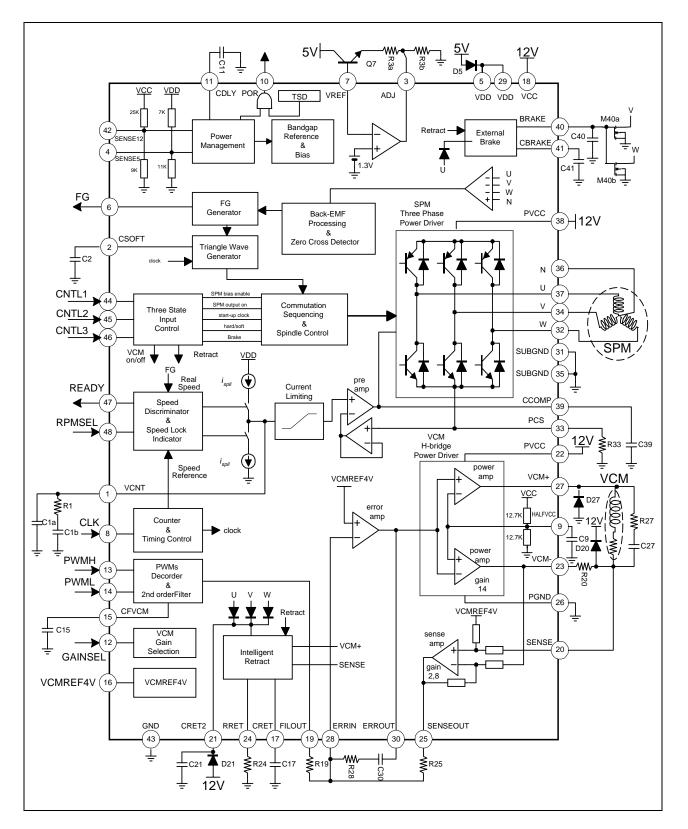



Figure 9. Regulator Output for Digital ASIC

Thermal Shut Down

A TSD circuit is included to protect the chip from damaging during momentary shorts that might occur during prototyping and troubleshooting. The trip temperature is set to 150°C with 30°C hysteresis. A thermal fault starts retract and braking operation and also makes POR pin low.

Typical Application Circuits

Parts List

Part NO.	Value	Туре
R1	280K	1/8W
R3A	15K	1/8W
R3B	10K	1/8W
R19	6K	1/8W
R20	1	1/2W
R24	2.2K	1/8W
R25	4K	1/8W
R27	30	1/4W
R28	2.2K	1/4W
R33	0.33	1W
C1A	1μ	ELECTROLYTIC, 6V
C1B	0.22µ	CERAMIC, 6V
C2	27n	CERAMIC, 6V
C11	0.047μ	CERAMIC, 16V
C15	0.68n	CERAMIC, 10V
C17	1μ	ELECTROLYTIC, 16V
C21	2.2μ	ELECTROLYTIC,16V
C30	33n	CERAMIC,16V
C39	0.1μ	CERAMIC,16V
C40	0.47μ	ELECTROLYTIC,16V
C41	2.2μ	ELECTROLYTIC,16V
Q7	KSH29	D-PACK
M40A	SSD2003	8SOP
M40B	SSD2003	8SOP
D5	RB4110	SOT23
D20	RB4110	SOT23
D21	RB4110	SOT23
D27	RB4110	SOT23

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com