3V 1700MHZ LINEAR AMPLIFIER MODULE ### Typical Applications - 3V CDMA Korean-PCS Handsets - Spread-Spectrum Systems Designed for Compatibility with Qualcomm Chipsets #### **Product Description** The RF3100-3K is a high-power, high-efficiency linear amplifier IC targeting 3V hand-held systems. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in dual-mode 3V CDMA hand-held digital cellular equipment, spread-spectrum systems, and other applications in the 1750MHz to 1780MHz band. The RF3100-3K has a digital control line for low power application to reduce the current drain. The device is self-contained with 50Ω input and output that is matched to obtain optimum power, efficiency, and linearity characteristics. The module is an ultra-small 6mmx6mm land grid array with backside ground. Optimum Technology Matching® Applied Si BJT **▼** GaAs HBT ☐ GaAs MESFET ☐ Si Bi-CMOS ☐ SiGe HBT ☐ Si CMOS Functional Block Diagram Package Style: LGM (6mmx6mm) #### **Features** - Input/Output Internally Matched @ 50Ω - Single 3V Supply - 28dBm Linear Output Power - -141dBm/Hz Noise Power - 35% Linear Efficiency - 45mA Idle Current (Low Power Mode) #### Ordering Information RF3100-3K 3V 1700MHz Linear Amplifier Module RF3100-3K PCBA Fully Assembled Evaluation Board RF Micro Devices, Inc. 7628 Thorndike Road Greensboro, NC 27409, USA Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com Rev A3 011017 2-273 # RF3100-3K ### **Absolute Maximum Ratings** | Parameter | Rating | Unit | |--|-------------|-----------------| | Supply Voltage (RF off) | +8.0 | V _{DC} | | Supply Voltage (P _{OUT} ≤29dBm) | +5.2 | V_{DC} | | Control Voltage (V _{REG}) | +4.2 | V_{DC} | | Mode Voltage (V _{MODE}) | +3.5 | V_{DC} | | Input RF Power | +10 | dBm | | Operating Case Temperature | -30 to +110 | ℃ | | Storage Temperature | -30 to +150 | $^{\circ}$ | RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s). | Parameter | Specification | | Unit | Condition | | | |---|---------------|------|-----------|-----------|---|--| | Parameter | Min. | Тур. | Тур. Мах. | | Condition | | | High Power State | | | | | Typical Performance at V _{CC} =3.2V, | | | • | | | | | V _{REG} =2.85 V, T _{AMB} =25°C, | | | (V _{MODE} Low) | | | | | Frequency=1750MHz to 1780MHz (unless otherwise specified) | | | Frequency Range | 1750 | | 1780 | MHz | (unless otherwise specified) | | | Linear Gain | 25.5 | 27.5 | 1700 | dB | | | | Second Harmonic | 20.0 | -49 | | dBc | | | | Third Harmonic | | -52 | | dBc | | | | Maximum Linear Output Power | 28 | -52 | | dBm | | | | (CDMA Modulation) | 20 | | | ubiii | | | | Total Linear Efficiency | | 35 | | % | P _{OUT} =28dBm | | | Adjacent Channel Power Rejection | | -46 | -44.5 | dBc | ACPR @ 1.25MHz, P _{OUT} =28dBm | | | • | | -60 | -57.5 | dBc | ACPR @ 2.25MHz, P _{OUT} =28dBm | | | Input VSWR | | <2:1 | | | | | | Output VSWR | | | 10:1 | | No damage. | | | · | | | 6:1 | | No oscillations. >-70dBc | | | Noise Power | | -141 | | dBm/Hz | At 90MHz offset. | | | | | | | | Typical Performance at V _{CC} =3.2V, | | | Low Power State | | | | | V_{REG} =2.85 V, T_{AMB} =25°C, | | | (V _{MODE} High) | | | | | Frequency=1750MHz to 1780MHz | | | | | | | | (unless otherwise specified) | | | Frequency Range | 1750 | | 1780 | MHz | | | | Linear Gain | 17 | 20 | | dB | | | | Second Harmonic | | -49 | | dBc | | | | Third Harmonic | | -52 | | dBc | | | | Maximum Linear Output Power (CDMA Modulation) | 16 | | | dBm | | | | Adjacent Channel Power Rejection | | -52 | -46.5 | dBc | ACPR @ 1.25MHz | | | | | -66 | -61 | dBc | ACPR @ 2.25MHz | | | Input VSWR | | <2:1 | | | | | | Output VSWR | | | 10:1 | | No damage. | | | | | | 6:1 | | No oscillations. >-70dBc | | 2-274 Rev A3 011017 | Parameter | Specification | | Unit | Condition | | |----------------------------------|---------------|------|------|-----------|---| | | Min. | Тур. | Max. | Onit | Condition | | DC Supply | | | | | T _{AMB} =25°C | | Supply Voltage | 3.2 | 3.7 | 4.2 | V | | | Quiescent Current | | 170 | 240 | mA | V _{MODE} =Low, V _{REG} =2.85V | | | | 50 | 80 | mA | V _{MODE} =High, V _{REG} =2.85 V | | V _{REG} Current | | 6 | 10 | mA | | | V _{MODE} Current | | | 1.5 | mA | | | Turn On/Off Time | | | 6 | μs | | | Total Current (Power Down) | | 5 | 10 | μΑ | V _{REG} =Low, V _{MODE} =Low | | V _{REG} "Low" Voltage | 0 | | 0.5 | V | | | V _{REG} "High" Voltage | 2.8 | 2.85 | 2.9 | V | | | V _{MODE} "Low" Voltage | 0 | | 0.5 | V | | | V _{MODE} "High" Voltage | 2.0 | | 3.0 | V | | Rev A3 011017 2-275 # RF3100-3K | Pin | Function | Description | Interface Schematic | |-------------|----------|---|---------------------| | 1 | VCC1 | First stage collector supply. A low frequency decoupling capacitor (e.g., $1\mu F$) is required. | | | 2 | RF IN | RF input internally matched to 50Ω . This input is internally AC-coupled. | | | 3 | VREG | Regulated voltage supply for amplifier bias. In Power Down mode, both V_{REG} and V_{MODE} need to be LOW (<0.5 V). | | | 4 | VMODE | For nominal operation (High Power Mode), V _{MODE} is set LOW. When set HIGH, devices are turned off to improve efficiency. | | | 5 | VCC2 | Output stage collector supply. A low frequency decoupling capacitor (e.g., $1\mu F$) is required. | | | 6 | RF OUT | RF output internally matched to 50Ω . This output is internally AC-coupled. | | | 7 | GND | Ground connection. Connect to package base ground. For best performance, keep traces physically short and connect immediately to ground plane. | | | Pkg
Base | GND | Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane. | | 2-276 Rev A3 011017 ### **Evaluation Board Schematic** (Download Bill of Materials from www.rfmd.com.) Rev A3 011017 2-277 # RF3100-3K ## **Evaluation Board Layout** Board Size 1.5" x 1.5" Board Thickness 0.032", Board Material FR-4, Multi-Layer, Ground Plane at 0.014" 2-278 Rev A3 011017