Monolithic Linear IC

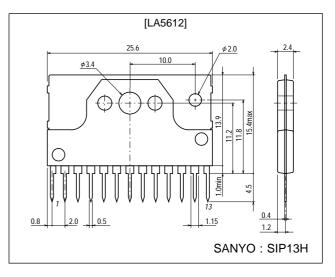
LA5612

SANYO

Multifunctional Voltage Regulator for TVs and VCRs with BS Tuner

Applications

• Audiovisual equipment, VCRs and TVs with BS tuner


Features

- Low-saturation regulator (ON/OFF function built in)
- Control amplifier built in.
- Current limit and thermal limit circuits built in
- Reverse current prevention provided $(V_O 1)$

Package Dimensions

unit : mm

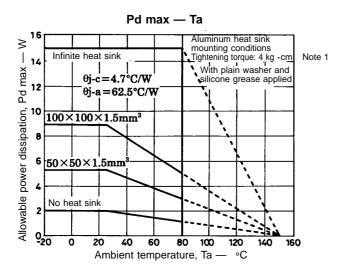
3107-SIP13H

Specfications

Maximum Ratings at Ta = 25 $^{\circ}$ C

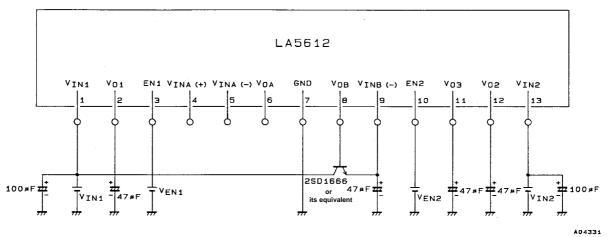
Parameter	Symbol	Conditions Ratings		Unit
Maximum input valtage	V _{IN} 1 max		22	V
Maximum input voltage	V _{IN} 2 max	V _{IN} 1≧V _{IN} 2	V _{IN} 1	
Allowable power dissipation	Pd max	No heat sink	2	W
Thermal resistance between junction and case	өј-с		4.7	°C/W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-40 to +150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.


SANYO Electric Co.,Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Operating Conditions at 7	$a = 25 \circ C$	

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V _{IN} 1		11.5 to 20	V
input voltage	V _{IN} 2		6.2 to 20	V
Output current 1	I _O 1		10 to 360	mA
Output current 2	I _O 2		10 to 420	mA
Output current 3	I _O 3		10 to 420	mA


Operating Characteristics at Ta = 25 $^{\circ}$ C, See specified Test Circuit.

Parameter	Symbol	Conditions	min	typ	max	Unit
		$_{\rm EN}$ = 3 V, V _{EN} 2 = 3 V, V _{IN} 1 = 16.5 V, V _{IN} 2 = 6.6 V, I			1	Onic
		<u> </u>	 	7	14	mA
Quiescent current	I _{IN} 2			8	16	mA
Regulator 11 When Vo1, Vo2, V		1 = 3 V, V _{EN} 2 = 3 V, V _{IN} 1 = 16.5 V, V _{IN} 2 = 6.6 V, I _O 1	= 300 r		10	110.0
Output voltage 1	V ₀ 1		13.7	14.5	15.2	V
Dropout voltage	V _{DROP} 1			0.5	1.0	V
Line regulation	∆V _{OLN} 1	$16.5 \text{ V} \leq \text{V}_{IN} 1 \leq 20.5 \text{ V}$			140	mV
Load regulation	∆V _{OLD} 1	$10\text{mA} \leq I_{O}1 \leq 300 \text{ mA}$			150	mV
Output inflow current	I _O 1 IN	22 V applied to pin V _O 1, no-load mode			500	μΑ
Peak output current	I _{OP} 1		360			mA
Output short-circuit current	I _{OSC} 1			45	180	mA
Ripple rejection	Rrej1			50		dB
Output low-level voltage	V _O 1 OFF	V _{EN} 1 = 1 V, when V _O 1 is off			0.2	V
Output voltage/temperature coefficient	∆V _O 1/∆Ta			±0.5	-	mV/ ∘C
	3 is on : VEN	$1 = 3 \text{ V}, \text{ V}_{\text{EN}}2 = 3 \text{ V}, \text{ V}_{\text{IN}}1 = 16.5 \text{ V}, \text{ V}_{\text{IN}}2 = 6.6 \text{ V}, \text{ I}_{\text{O}}2$	2 = 350 r	nA		1
Output voltage 2	V ₀ 2		4.80	5.05	5.30	V
Dropout voltage	V _{DROP} 2			0.5	1.0	V
Line regulation	∆V _{OLN} 2	$6 \text{ V} \leq \text{V}_{\text{IN}} 2 \leq 7.2 \text{ V}$			20	mV
Load regulation	∆V _{OLD} 2	$100 \text{ mA} \leq \text{I}_{\text{O}}\text{2} \leq 350 \text{ mA}$			100	mV
Peak output current	I _{OP} 2	5	420			mA
Output short-circuit current	I _{OSC} 2			65	210	mA
Ripple rejection	Rrej2			50		dB
Output low-level voltage	V _O 2 OFF	$V_{EN}2 = 1 V$, when V_O2 is off			0.2	V
Output voltage/temperature coefficient	∆V _O 2/∆Ta			±0.5		mV/ °C
	∩3 is on : VEN	$1 = 3 \text{ V}, \text{ V}_{\text{EN}}2 = 3 \text{ V}, \text{ V}_{\text{IN}}1 = 16.5 \text{ V}, \text{ V}_{\text{IN}}2 = 6.6 \text{ V}, \text{ I}_{\text{O}}3 \text{ V}$	s = 350 r	nA	I	1
Output voltage 3	V ₀ 3		4.80	5.05	5.30	V
Dropout voltage	V _{DROP} 3			0.5	1.0	V
Line regulation	∆V _{OLN} 3	$6 \text{ V} \leq \text{V}_{\text{IN}} 2 \leq 7.2 \text{ V}$			20	mV
Load regulation	∆V _{OLD} 3	$100 \text{ mA} \leq \text{I}_{O}3 \leq 350 \text{ mA}$			100	mV
Peak output current	I _{OP} 3	5	420			mA
Output short-circuit current	I _{OSC} 3			65	210	mA
Ripple rejection	Rrej3			50		dB
Output low-level voltage	V _O 3 OFF	$V_{EN}2 = 1 V$, when V_O3 is off			0.2	V
Output voltage/temperature coefficient	∆V _O 3/∆Ta			±0.5		mV/ ∘C
[Output on/off control] $V_{IN}1 = 16.5 \text{ V}, V_{IN}2 = 6.6 \text{ V}$						
Output on control voltage	V _{EN} 1 H	V _O 1: on, V _{EN} 1 < 22 V V _O 2, V _O 3: on, V _{EN} 2 < 22 V	3.0		V _{IN} 1	V
Output off control voltage	V _{EN} 1 L V _{EN} 2 L	V_0 1: off V_0 2, V_0 3: off	-		1.0	V
Amplifier Al When Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol.		V_{02} , V_{03} . 01 = 3 V, V_{EN} 2 = 3 V, V_{IN} 1 = 16.5 V, V_{IN} 2 = 6.6 V				1
Input offset voltage	V _{IOA}	$= 0.0, v_{\rm EN2} = 0.0, v_{\rm IN} = 10.0, v_{\rm IN2} = 0.0, v_{\rm IN2} = 0.$			±7	mV
Input bias current					250	nA
Output current (source)		$V_{INA}^{+} = 1 \text{ V}, V_{INA}^{-} = 0 \text{ V}$	10		200	mA
Output current (sink)		$V_{INA} = 1 V, V_{INA} = 0 V$ $V_{INA}^+ = 0 V, V_{INA}^- = 1 V$	10			mA
		$V_{INA} = 0.0, V_{INA} = 1.0$ = 3 V, V _{EN} 2 = 3 V, V _{IN} 1 = 16.5 V, V _{IN} 2 = 6.6 V				
Output current (source)		$= 0.0 \text{ v}, \text{ v}_{\text{ENZ}} = 0.0 \text{ v}, \text{ v}_{\text{INT}} = 10.0 \text{ v}, \text{ v}_{\text{INZ}} = 0.0 \text{ v}$	10			mA
	IOB SOURCE		10			

Note 1: The tightening torque referred to in the above figure is a condition specified for the heat dissipation characteristics and not a working condition to be met when mounting the heat sink.

Test Circuit

Pin Functions

No.	Symbol	Function
1	V _{IN} 1	High voltage input.
2	V _O 1	14.5 V/300 mA regulator, with reverse current prevention.
3	EN1	Regulator 1 on/off control. High active.
4	V _{INA} (+)	Amplifier A noninverting input.
5	V _{INA} (–)	Amplifier A inverting input.
6	V _{OA}	Amplifier A output.
7	GND	Substrate of the LA5612 (minimum potential).
8	V _{OB}	Amplifier B output (5 V regulator supported by external NPN transistor).
9	V _{INB} (–)	Amplifier B inverting input (5 V regulator supported by external NPN transistor).
10	EN2	Regulator 2 and regulator 3 on/off control. High active.
11	V _O 3	5.05 V/350 mA regulator.
12	V _O 2	5.05 V/350 mA regulator.
13	V _{IN} 2	Low-voltage input.

Circuit block	V _O 1	V _O 2	V _O 3	AMP A	AMP B
Input line	V _{IN} 1	V _{IN} 2	V _{IN} 2	V _{IN} 1	V _{IN} 1
Current limit	0	0	0	×	×
Thermal limit	0	0	0	×	×
On/off control	EN1	EN2	EN2	×	×

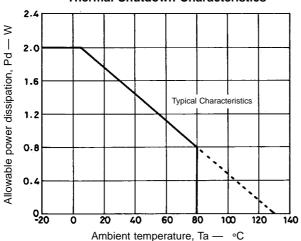
Function Table (O: built in, x: not built in)

Usage Notes

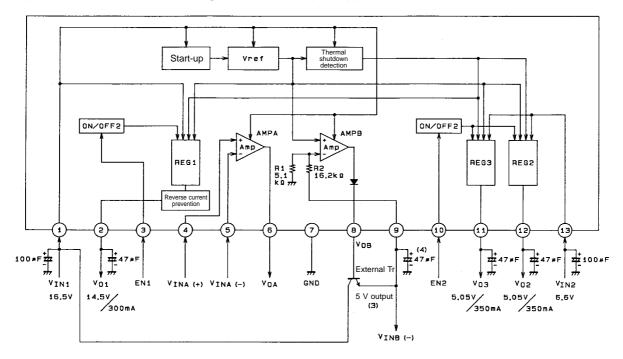
- (1) Apply voltage to the voltage input pins on condition that $V_{IN}1 \ge V_{IN}2$.
- (2) Apply voltage simultaneously to $V_{IN}1$ and $V_{IN}2$. Do not use the LA5612 with voltage applied to only one of these pins.
- (3) Since the amplifiers do not have current limit protection such as an external NPN transistor, provide this protection in each application.

Logic Table

Conditions : when $V_{IN}1{}\geqq~V_{IN}2$ (at $V_{IN}1{}\geqq~4$ V, $V_{IN}2{}\geqq~4$ V)


EN1,EN2	V _O 1, V _O 2, V _O 3
L or open	L
Н	Н

(1) "H" for EN denotes high level; "L" denotes low level or open.


- (2) "H" for V_O denotes output ON voltage; "L" denotes output OFF voltage.
- (3) Each output voltage corresponds to each EN and is controlled independently. (EN1 is coupled with V_01 , and EN2 with V_02 and V_03 .)

Thermal Design Notes

- (1) In the LA5612, the junction temperature (Tj) at which thermal shutdown is activated is approximately equal to 130°C.
- (2) Consequently, the operating range of REG1, REG2 and REG3 with the thermal shutdown function is restricted by the thermal shutdown characteristics (typical value) shown in the figure below.
- (3) The thermal shutdown characteristics vary ±20°C or so. Since thermal shutdown is liable to occur with inadequate heat dissipation, sufficient consideration must be given to the heat dissipation design.

Thermal Shutdown Characteristics

Equivalent Circuit Block Diagram and Sample Application Circuit

Application Notes

A04330

- (1) The input line for AMP A and AMP B is shared with $V_{IN}\mathbf{1}.$
- (2) AMP A and AMP B are on in normal use.
- (3) The output voltage is 5 V when an external NPN transistor has been added.
- (4) Depending on the type, load current and connection position (distance from the LA5612) of the external NPN transistor, the value of a capacitor connected between emitter and ground must be changed for stable operation.
- (5) The capacitors connected between each pin and GND are bypass capacitors for preventing oscillation: as such, they must be positioned as close to the LA5612 as possible in order to stabilize operation.
 - Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
 - SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
 - In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
 - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
 - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
 - Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1995. Specifications and information herein are subject to change without notice.