
PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000

PM5356

S/UNI-622-MAX

SOFTWARE DRIVER FOR THE
S/UNI-622-MAX

PRELIMINARY

ISSUE 1

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

i

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

CONTENTS

1 OVERVIEW...1

1.1 SCOPE ..1

1.2 AUDIENCE...1

1.3 OBJECTIVES...1

2 SOFTWARE DRIVER FEATURES ...2

3 APPLICATION PROGRAMMER’S INTERFACE4

3.1 SOFTWARE ARCHITECTURE..4

3.1.1 Application Interface..5

3.1.2 RTOS Interface..5

3.1.3 S/UNI-622-MAX Hardware Interface6

3.2 DRIVER FILES ..6

3.3 USING THE API TO ACCESS FEATURES OF THE S/UNI-622-
MAX ...6

3.3.1 Access to Features via the Registers..................................7

3.3.2 Power-on Initialization, Self Test and Activation...................7

3.3.3 Event Notification ..8

3.4 DATA STRUCTURES ...8

3.4.1 tMaxState ..8

3.4.2 maxDDB..10

3.5 APPLICATION INTERFACE FUNCTION PROTOTYPES.............11

3.5.1 maxEntryPoint ...11

3.5.2 maxExitPoint ...11

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

ii

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.5.3 maxReset ..12

3.5.4 maxInit...12

3.5.5 maxActivate...12

3.5.6 maxIsr ...13

3.5.7 maxEnableInterrupts ...13

3.5.8 maxDisableInterrupts ..14

3.5.9 maxStatistics ...14

3.5.10 maxClearCounters ..14

3.5.11 maxReadRegister ...15

3.5.12 maxWriteRegister..15

3.6 RTOS INTERFACE FUNCTION PROTOTYPES16

3.6.1 InstallIsr...16

3.6.2 InstallTimer..16

3.7 S/UNI-622-MAX INTERFACE FUNCTION PROTOTYPES17

4 APPENDIX A. SOURCE CODE..18

5 REFERENCES ...19

6 SOFTWARE CUSTOMER FEEDBACK FORM.......................................20

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

1

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

1 OVERVIEW

1.1 Scope

A software driver for the S/UNI-622-MAX (PM5356) is described in this
document. The driver is written in C language and is structured such that it is
reusable and can be ported to a user’s environment with minimal modification.
The application programmer’s interface (API) and an example of how to operate
the S/UNI-622-MAX via this API is presented.

The driver is built and tested on the S/UNI-622-MAX reference design[1]. The
software driver interfaces to the MC68332 processor of the reference design
board via processor dependent software, a simple software dispatcher and a
serial port interface. A thorough description of this additional software is not
covered in this document, nor is it supported, but the source code is made
available to users with the driver source code.

This driver source code is preliminary and not fully tested at the time this
document was issued. Please contact PMC for the latest status of the source
code.

1.2 Audience

The intended audience for this document is Software Engineers that use this
software to gain familiarity with the operation of the S/UNI-622-MAX product, or
to use this software in their own systems.

1.3 Objectives

The objective of making this driver available is to provide an example that may
shorten the learning curve and development time that users require to write
S/UNI-622-MAX drivers for their own systems. It also allows use of the reference
design as an evaluation/development vehicle, for users to gain familiarity with the
S/UNI-622-MAX and for users to code/unit test their own software while waiting
for their own hardware prototypes – effectively allowing the user’s hardware and
software development to run in parallel.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

2

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

2 SOFTWARE DRIVER FEATURES

The following features are provided by the software driver:

• Driver supports multiple S/UNI-622-MAX chips.

• Driver abstracts each S/UNI-622-MAX into a logical device to provide access
to these by device ID.

• Driver provides a device data block that allows the user to specify the
configuration of logical devices.

• API routines are provided to reset, initialize or activate a logical device.

• Driver provides a header file that defines all registers and bit fields of the
S/UNI-622-MAX to reduce the coding effort. The defines are parsed from the
datasheet and provide a means to access features of the S/UNI-622-MAX
directly by using the read/write register access routines of the API.

• API routines to poll and accumulate counter statistics

• An interrupt service routine to dispatch interrupt events to a user application

• Source code is written in ANSI C language.

• All source code that may need to be modified to port the driver to another
environment is located within a separate file.

• All routines are re-entrant. The user can use semaphores to lock access to
the device data block or the register space. Since the use of semaphores is
dependent on the software environment it is left to the user to add them if
necessary.

• Source code has debug macros that can be used during debug to dump error
events to a console.

The following features are provided as a user interface to the reference design
hardware:

• A serial port interface that accepts user commands and provides a log of
events due to interrupts or accumulation of statistics.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

3

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

• Commands that invoke the API routines, and allow the API data structures to
be accessed.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

4

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3 APPLICATION PROGRAMMER’S INTERFACE

3.1 Software Architecture

The S/UNI-622-MAX driver interfaces to software and hardware components as
shown in figure 1. Each of these interfaces is described in the following sections.
Communication between components is via function calls, and in the opposite
direction, via function callbacks.

The application programmer’s interface (API) covers the function calls and data
structures passed through the three planes shown in figure 1. These planes
interface to the application component, the RTOS component, and the
S/UNI-622-MAX hardware. The arrows show the direction of a function call.

Figure 1. Interfaces of the S/UNI-622-MAX Driver

6�81,�����0$;

5726

$SSOLFDWLRQ

6�81,�����0$;

'HYLFH 'ULYHU

)XQFWLRQ FDOOV ,QGLFDWLRQ FDOOEDFNV

5HJLVWHU $FFHVV ,QWHUUXSW

6HUYLFH FDOOV

6HUYLFH FDOOEDFNV

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

5

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.1.1 Application Interface

The user’s application task interfaces to the driver by making function calls that
command the driver to carry out a specified operation on the S/UNI-622-MAX.
The function prototypes are shown in section 3.5.

Each S/UNI-622-MAX in a system is managed as a separate device with a
unique data structure to manage it. For this reason the application must identify
the device when making a driver function call with a device ID.

When an event occurs within the S/UNI-622-MAX the driver must notify the user
application that the event occurred. This is done via an Indication function
callback with the device ID as a function parameter.

3.1.2 RTOS Interface

The real-time operating system (RTOS) provides the environment for the driver
and user application to run. Typically this would be a multi-tasking, single
processor, environment with semaphores to protect critical sections of code or
variables from being corrupted. The RTOS provides the following services to the
driver:

• Install a system timeout, or periodic timer.

• Install an interrupt service routine that is dispatched when a S/UNI-622-MAX
interrupt pin is active.

• Provide memory management services to map the register space, allocate
data structures and translate between virtual and physical addressing.

• Creation and management of tasks.

• Task to task communication or message queues.

• Semaphores

The simplest environment for this driver to operate in is a single task where the
application is tightly coupled to the driver. In this case one task (the application)
directly calls the API routines and another task (the RTOS) may call the service
callback. The service callback could be the interrupt service routine or a routine
that periodically polls and accumulates counter statistics. In this case the driver is

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

6

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

written such that there is no contention among the application task and the
RTOS task for access to a S/UNI-622-MAX register or a field within the device
data block.

In a multi-tasking environment, where multiple applications may want to access
the same device simultaneously, the user could provide a loosely coupled
interface between the API and the application tasks. This would be implemented
by a queing mechanism and/or semaphores to block another application task
from calling an API routine of the device until the current API call has completed.

3.1.3 S/UNI-622-MAX Hardware Interface

The S/UNI-622-MAX hardware interfaces to the driver via register access and via
an interrupt pin.

3.2 Driver Files

The driver is designed for use with the reference design board[1] and some of
the interfaces may need to be modified or ported to the user’s environment. An
implementation file and a header file with the functions and defines that may
need to be modified to port the driver to another environment have been supplied
in the files “max_p.h” and “max_p.c”.

The registers and bit fields of the S/UNI-622-MAX have been taken from the
datasheet[2] and placed in the header file “max_r.h”. Further datasheet related
defines are provided in the file “max_d.h”.

The files “max.h” and “max.c” provide the rest of the driver.

An example application is provided by the file “app.c”.

3.3 Using the API to Access Features of the S/UNI-622-MAX

This software driver provides a framework for users to integrate the
S/UNI-622-MAX into their own systems. It provides an API of routines that all
users of the S/UNI-622-MAX would require. Additional features of the
S/UNI-622-MAX, such as access to overhead, diagnostics or configuration are
available directly to the user via read/write functions of the API, and by using the
header files that define all registers and bit fields.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

7

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.3.1 Access to Features via the Registers

For example, the following code segment shows how a user could modify the
value of the outgoing Path Signal Label (C2 byte) and read the receive path
signal label.

U8 Value;

DeviceId = DEVICE_ID_CHIP1;

/* modify the transmit path signal label for ATM payload*/
maxWriteRegister(DeviceId,REG_48_TPOP_Path_Signal_Label,0x13);

/* read the receive path signal label */
maxReadRegister(DeviceId,REG_37_RPOP_Path_Signal_Label,&Value);

3.3.2 Power-on Initialization, Self Test and Activation

A user will typically modify the “maxEntryPoint(…)” function for their application
environment and perform power-on initialization and self test (POST) of their
system. For this reason the user may need to reset, initialize and activate the
S/UNI-622-MAX directly via the API to place it in an operational state following
the POST. The following example illustrates this:

/* perform power-on initialization of the S/UNI-622-MAX */
maxEntryPoint();

/* power on self test : configure a diagnostic loopback */
DeviceId = DEVICE_SUNI_622_MAX_1;
pDevice = maxGetDevice(DeviceId);
pDevice->InitVector = NULL;
pDevice->ActivateVector = NULL;
maxReset(DeviceId);
value = maxReadRegister(DeviceId, REG_02_Master_Configuration_2);
value |= BIT_02_SDLE;
maxWriteRegister(DeviceId,REG_02_Master_Configuration_2,value);
maxInit(DeviceId);
maxActivate(DeviceId);

/* finished POST so configure for normal operation with defaults */
maxReset(DeviceId);
maxInit(DeviceId);
maxActivate(DeviceId);

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

8

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.3.3 Event Notification

Finally a user may need to be notified of an event within the S/UNI-622-MAX.
This occurs through the driver function “maxDispatchEvent(..)”. For example, the
user may wish to be notified that the receive path signal label has changed. The
user must first enable the interrupt event as shown here before device activation,
or within the “ActivateVector” before the device was activated:

/* get the current enables, without clearing status */
/* assume (EXTD=0) in register 0x36 */
maxReadRegister(DeviceId,REG_33_RPOP_Interrupt_Enable,&Value);

/* modify the interrupt enable bit */
maxWriteRegister(DeviceId,REG_33_RPOP_Interrupt_Enable,(Value|BIT_33_PSLE));

At some time later when the C2 byte changes the driver’s interrupt service
routine would dispatch the PSLI interrupt to the “maxDispatchEvent(…)” function
which is shown below:

void maxDispatchEvent(int DeviceId, int regnum, U8 val)
{
 char msg[MAX_MESSAGE_LENGTH];
 DebugMsg(msg,“Device%i: Int reg 0x%02lX = 0x%02lX”,DeviceId,regnum,val);
}

In this driver the event is simply written to the console, but the user would need
to port this function to interface to the user’s application, via a task
communication mechanism provided by the RTOS. In this driver all interrupt
events are assumed to have equal priority and are written to the console as they
are observed in the interrupt service routine. A user’s application would want to
prioritize and process these interrupt events. Typically the processed interrupt
events would be dispatched for storage in a database of the application.

3.4 Data Structures

3.4.1 tMaxState

The driver maintains one device per S/UNI-622-MAX. Operation of a device is
maintained via a device data block which is defined in the following sections. The
device data block has a state variable that is used to manage the state
transitions of the device as shown in figure 2.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

9

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Figure 2. State Diagram of a Device

Reset

Entry
Point

Init Active

posReset(…)

posActivate(…)

posReset(…)

posInit(…)

posReset(…)

The states of a device are defined as follows:

maxENTRY_POINT : This is the default state when the variable has not yet been
assigned by an API call that resets, initializes or activates the device.

maxRESET : The device has been reset via software. No other register accesses
have been performed after the reset. This state must occur before the device can
be initialized and ensures the device is in a known state of operation. Specifically
the device is idle while in the RESET state and does not affect operation of the
system.

maxINIT : The device data block (DDB) holds the initialization of the device and
and is passed into the maxInit(…) function to place the device in the initialization
state. The registers of the device are initialized but the device does not yet
interact with other system components. (ie. the device will not activate the
interrupt pin, or otherwise interact with the system.)

maxACTIVE : The device data block holds the interrupt enables and other
information necessary to allow the device to interact with the system. This
information is passed in the function call maxActivate(…) to place the device in
the active state. In the active state the S/UNI-622-MAX would be able to activate

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

10

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

the interrupt pin and interact with the other hardware components of the system.
The user must ensure that the processor has assigned an interrupt service
routine and has activated other system components as necessary before placing
a device in the active state.

3.4.2 maxDDB

The device context for the S/UNI-622-MAX is provided in the device data block
which has the members shown below. This structure is allocated within the
function call maxEntryPoint(…).

Member Description

u32 BaseAddress Address of the S/UNI-622-MAX in
memory space

tMaxState State State of this chip device

tMaxRegisterValue* InitVector Specifies initialization of chip device.
Assigned a NULL value for the chip
defaults.

tMaxRegisterValue* ActivateVector Specifies interrupt enables for chip
device. Assigned a NULL value for chip
defaults (all interrupts disabled).

u8 XXXXIntEn_RR There are 13 interrupt enable registers
associated with a channel device.
“XXXX” represents the hardware block
and “RR” represents the register
number.

u8 XXXXIntMask_RR There are 13 interrupt maskable
registers associated with a channel
device. These specify the interrupt
status bits to check within the interrupt
service routine. “XXXX” represents the
hardware block and “RR” represents
the register number.

u32 XXXXCount There are 10 counters associated with
a device. Here “XXXX” represents the

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

11

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

error counter name.

3.5 Application Interface Function Prototypes

The API has the following functions that allow the application component to
request an action from the driver:

3.5.1 maxEntryPoint

Description: This is the first API call that should be made. It allocates
and assigns devices for all S/UNI-622-MAX chips in the
system. Then it resets, initializes and finally activates the
devices.

Function Prototype: void maxEntryPoint(void)

Function Parameters: none

Return Value: maxSUCCESS – all devices have been successfully
placed in the active state

maxFAILURE – one or more devices could not be
activated.

Additional Notes: This function is in the porting file “max_p.c” because it
needs to be modified for the users environment.

3.5.2 maxExitPoint

Description: This function does the reverse of the MaxEntryPoint
function. It places all devices in the reset state and then
deallocates all device resources.

Function Prototype: void maxExitPoint(void)

Function Parameters: none

Return Value: none

Additional Notes: This function is in the porting file “max_p.c” because it
needs to be modified for the users environment.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

12

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.5.3 maxReset

Description: This function performs a software reset of a S/UNI-622-
MAX device.

Function Prototype: tMaxStatus maxReset(int DeviceId)

Function Parameters: DeviceId – specifies the device data block

Return Value: maxSUCCESS – reset completed

maxFAILURE – invalid device identifier specified.

Additional Notes: none

3.5.4 maxInit

Description: This function initializes the device, but does not enable
interrupts.

Function Prototype: tMaxStatus maxInit(int DeviceId)

Function Parameters: DeviceId – specifies the device data block for the
device.

Return Value: maxSUCCESS – the device has been successfully
initialized.

maxFAILURE – invalid device ID

Additional Notes: The caller must ensure the device data block specifies
the initialization values for the device.

3.5.5 maxActivate

Description: This function places the device in an active state by
enabling device interrupts.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

13

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype: tMaxStatus maxActivate(int DeviceId)

Function Parameters: DeviceId – specifies the device data block for the
device.

Return Value: maxSUCCESS – the device has been successfully
activated.

maxFAILURE – invalid device ID

Additional Notes:

3.5.6 maxIsr

Description: This function is the interrupt service routine for the chip
device.

Function Prototype: void maxIsr(int DeviceId)

Function Parameters: DeviceId – specifies the device data block for the chip
device.

Return Value: maxSUCCESS – the interrupt has been processed.

maxFAILURE – invalid device ID or no Interrupts were
active.

Additional Notes: Only the chip device requires an ISR. The channel
devices are serviced by the chip’s ISR.

3.5.7 maxEnableInterrupts

Description: This function re-enables interrupts for the device while
the device is in the ACTIVE state.

Function Prototype: void maxEnableInterrupts(int DeviceId)

Function Parameters: DeviceId – specifies the device data block.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

14

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Return Value: none

Additional Notes: This call is only valid in the active state.

3.5.8 maxDisableInterrupts

Description: This function disables interrupts for the device while the
device is in the ACTIVE state.

Function Prototype: void maxDisableInterrupts(int DeviceId)

Function Parameters: DeviceId – specifies the device data block for the
device.

Return Value: none

Additional Notes: This call is only valid in the active state.

3.5.9 maxStatistics

Description: This function should be called periodically to
accumulate counter statistics.

Function Prototype: void maxStatistics(int DeviceId)

Function Parameters: DeviceId – specifies the device data block for the
device.

Return Value: none

Additional Notes:

3.5.10 maxClearCounters

Description: This function clears the accumulated counter values.

Function Prototype: void maxClearCounters(int DeviceId)

Function Parameters: DeviceId – specifies the device data block for the

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

15

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

device.

Return Value: none

Additional Notes:

3.5.11 maxReadRegister

Description: This function reads the S/UNI-622-MAX register
associated with the device.

Function Prototype: bool maxReadRegister(int DeviceId,
int offset,U8* value)

Function Parameters: DeviceId – specifies the device data block for the
device.

offset – specifies the register number from the
datasheet.

value – is a pointer to an 8-bit value which is modified
with the value read.

Return Value: true – the register was successfully read

false – the register could not be read

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.5.12 maxWriteRegister

Description: This function writes the S/UNI-622-MAX register
associated with the device.

Function Prototype: bool maxWriteRegister(int DeviceId,
int offset,U8 value)

Function Parameters: DeviceId – specifies the device data block for the
device.

offset – specifies the register number from the
datasheet.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

16

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

value – is the 8-bit value to write.

Return Value: true – the register was successfully written

false – the register could not be written

Additional Notes: The device should be in the reset, init or active state
when making this call.

3.6 RTOS Interface Function Prototypes

The driver requests services from the RTOS which are defined in the following
function prototypes:

3.6.1 InstallIsr

Description: This function requests the RTOS to install an interrupt
service routine.

Function Prototype: void InstallIsr(void func(void*),void*
context)

Function Parameters: func – is the function which is to be called when an
interrupt occurs. (ie. maxIsr)

context – specifies the context passed as a parameter
in the function call. (ie. the device ID)

Return Value: none

Additional Notes:

3.6.2 InstallTimer

Description: This function requests the RTOS to periodically call a
timer function.

Function Prototype: void InstallTimer(int msec,
(void) *func(int),
void* context)

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

17

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Parameters: msec – is the period of the timer in milliseconds.

func – is the function which is to be called periodically.
(ie. maxStatistics)

context – specifies the context passed as a parameter
in the function call. (ie. the device ID)

Return Value: none

Additional Notes:

3.7 S/UNI-622-MAX Interface Function Prototypes

The driver uses macros to read and to write the hardware registers. These need
to be modified to port the driver to a different environment. The macro definitions
are as follows, where “c” is the device data block pointer, “regnum” is the register,
and “value” is the 8-bit value written to a register:

#define maxWrite(c, regnum, value) (*(U8*)(c->BaseAddress + (regnum)) = (value))

#define maxRead(c, regnum) (*(U8*)(c->BaseAddress + (regnum)))

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

18

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

4 APPENDIX A. SOURCE CODE

Please contact PMC-Sierra to obtain the source code.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

19

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5 REFERENCES

[1] PMC-981407, S/UNI-622-MAX Reference Design, PMC-Sierra, Issue 1.
[2] PMC-980589, S/UNI-622-MAX Datasheet, PMC-Sierra, Issue 2, August 1998.

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

20

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

6 SOFTWARE CUSTOMER FEEDBACK FORM

At PMC-Sierra we are always evaluating the ways we support our customers to improve
their time-to-market and success in using our products.
We encourage you to take the time to fill out the following feedback form and fax it back
to the applications group at 604-415-6206. Alternatively you can e-mail the information
to apps@pmc-sierra.com . Thank you in advance for you’re valuable feedback.

Please provide your name, company and contact information below:

Name:___

Company:__

Contact phone and/or e-mail: _____________________________________

SECTION 1. QUESTIONS
Please mark your responses to the following questions in the table below:

1. Have you previously used software source code provided for
free by other integrated circuit vendors?

Yes No

2. Has the availability of this software affected your decision to
choose PMC-Sierra as a vendor of integrated circuits?

Yes No

3. Where did you first hear about PMC-Sierra’s software driver
source code?

a) PMC-Sierra Web site (www.pmc-sierra.com)
b) Co-workers
c) PMC-Sierra Salesperson or Sales Representative
d) PMC-Sierra Customer Support Engineer
e) Interop trade show
f) SATURN conference
g) Other (please specify

_________________________________)
4. Did this software driver reduce your time-to-market or shorten

the learning curve of using a PMC-Sierra integrated circuit?
Yes No

a) Estimated time saved:

5. Do you feel that another vendor of integrated circuits provides
better software support for their integrated circuit?

Yes No

If you answered yes then please specify the vendor, the
product, and the software support the vendor provided

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

21

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

below.

SECTION 2. RATING
Please rate this software source code in the following areas:
(1 = outstanding, 2 = exceeded expectations, 3 = met expectations, 4 = inadequate, 5 =
poor)

RATING
Document :

Readability 1 2 3 4 5
Targeted to audience 1 2 3 4 5
Usefulness 1 2 3 4 5
Completeness 1 2 3 4 5
Detailed 1 2 3 4 5
Accuracy 1 2 3 4 5

Application Programmers’ Interface (API):
Completeness 1 2 3 4 5
Usability 1 2 3 4 5

Source Code:
Structure 1 2 3 4 5
Style 1 2 3 4 5
Usefulness 1 2 3 4 5
Completeness 1 2 3 4 5
Portability 1 2 3 4 5
Accuracy 1 2 3 4 5

Overall Rating: 1 2 3 4 5

SECTION 3. COMMENTS
Please comment on any areas where you feel PMC-Sierra could improve the software
support and software documentation for this product:

PM5356 S/UNI-622-MAX

APPLICATION NOTE

PMC-981297 ISSUE 1 SOFTWARE DRIVER FOR THE S/UNI-622-MAX

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or
suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility
with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly
disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied
warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits,
lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility
of such damage.

© 1999 PMC-Sierra, Inc.

PM-981296 (R1)

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

