

74ABT544

Octal latched transceiver with dual enable, inverting (3-State)

Product data
2002 Nov 18
Supersedes data of 1993 Jun 01

Octal latched transceiver with dual enable, inverting (3-State)

74ABT544

FEATURES

- Combines 74ABT640 and 74ABT373 type functions in one device
- 8-bit octal transceiver with D-type latch
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- Output capability: +64 mA/-32 mA
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ABT544 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT544 Octal Registered Transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable (LEAB, LEBA) and Output Enable (OEAB, OEBA) inputs are provided for each register to permit independent control of data transfer in either direction. The outputs are guaranteed to sink 64 mA .

FUNCTIONAL DESCRIPTION

The 74ABT544 contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to- B Enable ($\overline{E A B}$) input and the A-to- B Latch Enable (LEAB) input are LOW, the A-to-B path is transparent. A subsequent LOW-to-HIGH transition of the LEAB signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With EAB and OEAB both LOW, the 3 -State B output buffers are active and invert the data present at the outputs of the A latches.
Control of data flow from B to A is similar, but using the EBA, LEBA, and OEBA inputs.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathbf{T}_{\text {amb }}=\mathbf{2 5}{ }^{\circ} \mathbf{C} ; \mathbf{G N D}=\mathbf{0} \mathbf{V}$	TYPICAL	UNIT
tpLH $\mathrm{t}_{\mathrm{CHL}}$	Propagation delay An to Bn or Bn to An	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.9	ns
C_{IN}	Input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{I}_{\mathrm{CCZ}}$	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	110	$\mu \mathrm{~A}$

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	TEMPERATURE RANGE	DWG NUMBER
74ABT544N	DIP24: 24 -pin plastic dual in-line package	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT222-1
74ABT544D	SO24: 24 -pin plastic small outline package	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT137-1
74ABT544DB	SSOP24: 24 -pin plastic shrink small outline package; Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT340-1
74ABT544PW	TSSOP24: 24 -pin thin shrink small outline package; Type I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT355-1

PIN CONFIGURATION

	24 $V_{C C}$ 23 EBA 22 B0 21 B1 20 B2 19 B3 18 B4 17 B5 16 B6 15 B7 14 LEAB 13 OEAB SA00168

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
14,1	LEAB / LEBA	A-to-B / B-to-A Latch Enable input (active-LOW)
11,23	EAB / EBA	A-to-B / B-to-A Enable input (active-LOW)
13,2	OEAB / OEBA	A-to-B / B-to-A Output Enable input (active-LOW)
$3,4,5,6$, $7,8,9,10$	A0 - A7	Port A, 3-State outputs
$22,21,20,19$, $18,17,16,15$	B0 - B7	Port B, 3-State outputs
12	GND	Ground (0 V)
24	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage

Octal latched transceiver with dual enable, inverting (3-State)

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS				OUTPUTS	STATUS
OEXX	EXX	$\overline{\text { LEXX }}$	An or Bn	An or Bn	
H	X	X	X	Z	Disabled
X	H	X	X	Z	Disabled
L	\uparrow	L	h	Z	Disabled + Latch
L	\uparrow	L	I	Z	L
Latch + Display					
L	L	\uparrow	I	H	
L	L	L	H	L	Transparent
L	L	H	X	NC	Hold

[^0]Octal latched transceiver with dual enable, inverting (3-State)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +7.0	V
IIK	DC input diode current	$\mathrm{V}_{1}<0 \mathrm{~V}$	-18	mA
V_{1}	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
IOK	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50	mA
$\mathrm{V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in OFF or HIGH state	-0.5 to +5.5	V
Iout	DC output current	output in LOW state	128	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal latched transceiver with dual enable, inverting (3-State)

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LIMITS		UNIT	
		Min		
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	High-level input voltage	2.0	-	V
V_{IL}	Low-level Input voltage	-	0.8	V
I_{OH}	High-level output current	-	-32	mA
I_{OL}	Low-level output current	-	64	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\mathrm{V}_{\text {IK }}$	Input clamp vo	tage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$	-	-0.9	-1.2	-	-1.2	V
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	3.2	-	2.5	-	V
			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	3.0	3.7	-	3.0	-	V	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\text {OH }}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	2.0	2.3	-	2.0	-	V	
$\mathrm{V}_{\text {OL }}$	Low-level out	voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}	-	0.42	0.55	-	0.55	V	
$\mathrm{V}_{\text {RST }}$	Power-up outp voltage ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	0.13	0.55	-	0.55	V	
1	Input leakage current	Control pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V	-	± 0.01	± 1.0	-	± 1.0	$\mu \mathrm{A}$	
		Data pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V	-	± 5	± 100	-	± 100	$\mu \mathrm{A}$	
IOFF	Power-off leakage current		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$	-	± 5.0	± 100	-	± 100	$\mu \mathrm{A}$	
IPU/PD	Power-up/down 3-State output current ${ }^{4}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OE}}=\text { Don't care } \end{aligned}$	-	± 5.0	± 50	-	± 50	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{IH}}+\mathrm{l}_{\text {OZH }}$	3-State output HIGH current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$	-	5.0	50	-	50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	3-State output LOW current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	-5.0	-50	-	-50	$\mu \mathrm{A}$	
$I_{\text {cex }}$	Output HIGH leakage current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	5.0	50	-	50	$\mu \mathrm{A}$	
10	Output current ${ }^{1}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-65	-180	-50	-180	mA	
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs HIGH; $V_{1}=G N D$ or $V_{C C}$	-	110	250	-	250	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{CCL}}$			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs LOW; $\mathrm{V}_{1}=$ GND or V_{CC}	-	20	30	-	30	mA	
Iccz			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs 3-State; $\mathrm{V}_{1}=\mathrm{GND}$ or V_{CC}	-	110	250	-	250	$\mu \mathrm{A}$	
$\Delta_{\text {l }} \mathrm{CC}$	Additional supply current per input pin ${ }^{2}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	0.3	1.5	-	1.5	mA	

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 2.1 V , with a transition of 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

Octal latched transceiver with dual enable, inverting (3-State)

AC CHARACTERISTICS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay An to Bn, Bn to An	1	$\begin{aligned} & \hline 1.1 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay LEBA to An, LEAB to Bn	1,2	$\begin{aligned} & 1.6 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.1 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \hline 6.6 \\ & 7.1 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$	Output enable time OEBA to An, OEAB to Bn	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLz } \\ & \hline \end{aligned}$	Output disable time OEBA to An, OEAB to Bn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.4 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\mathrm{pzZL}} \\ & \hline \end{aligned}$	Output enable time EBA to An, EAB to Bn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.4 \\ & 7.5 \\ & \hline \end{aligned}$	ns
$\begin{array}{r} \text { tphz } \\ \text { tpLz } \\ \hline \end{array}$	Output disable time EBA to An, EAB to Bn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.0 \end{aligned}$	ns

AC SET-UP REQUIREMENTS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			Min	Typ	Min	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-up time An to LEAB, Bn to LEBA	3	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time An to LEAB, Bn to LEBA	3	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline-0.3 \\ & -1.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-up time An to EAB, Bn to EBA	3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time An to EAB, Bn to EBA	3	$\begin{aligned} & \hline 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline-0.2 \\ & -1.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Latch Enable pulse width, LOW	3	3.5	1.8	3.5	ns

Octal latched transceiver with dual enable, inverting (3-State)

AC WAVEFORMS

Waveform 1. Propagation delay for inverting output

Waveform 2. Propagation delay for non-inverting output

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$, the shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 3. Data set-up and hold times and Latch Enable pulse width

Octal latched transceiver with dual enable, inverting (3-State)

TEST CIRCUIT AND WAVEFORM

Octal latched transceiver with dual enable, inverting (3-State)

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	$\underset{\max .}{\mathrm{A}}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	w	$\mathrm{Z}^{(1)}$
mm	4.70	0.38	3.94	$\begin{aligned} & 1.63 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 31.9 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 6.73 \\ & 6.25 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.51 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.13 \\ & 7.62 \end{aligned}$	$\begin{gathered} 10.03 \\ 7.62 \end{gathered}$	0.25	2.05
inches	0.185	0.015	0.155	$\begin{aligned} & 0.064 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 1.256 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 0.265 \\ & 0.246 \end{aligned}$	0.100	0.300	$\begin{aligned} & 0.138 \\ & 0.120 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 0.300 \end{aligned}$	0.01	0.081

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT222-1		MS-001			$\begin{aligned} & -99-04-28 \\ & 99-12-27 \end{aligned}$

Octal latched transceiver with dual enable, inverting (3-State)

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT137-1	075E05	MS-013		\square ¢	$\begin{aligned} & -97-05-27 \\ & 99-12-27 \end{aligned}$

Octal latched transceiver with dual enable, inverting (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	8.4	5.4	0.6	7.9	1.25	1.03	0.9	0.2	0.13	0.1	0.8

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT340-1		MO-150		- ¢	$\begin{aligned} & 95-02-04 \\ & 99-12-27 \end{aligned}$

Octal latched transceiver with dual enable, inverting (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.10	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$8^{0}{ }^{\circ}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT355-1		MO-153		- ($\begin{aligned} & -95-02-04 \\ & 99-12-27 \end{aligned}$

Octal latched transceiver with dual enable, inverting (3-State)

REVISION HISTORY

Rev	Date	Description
$_^{2}$	20021118	Product data; second version (9397 750 10752). Supersedes data of 1993 Jun 01. Engineering Change Notice 853-1610 29205 (date: 20021115).
	19930601	Product data; initial version. Engineering Change Notice 853-1610 09907 (date: 19930601).

Octal latched transceiver with dual enable, inverting (3-State)

Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com.

Fax: +31 402724825
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
© Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A.
Date of release: 11-02
Document order number:
939775010752

[^0]: $\mathrm{H}=$ High voltage level
 $h=$ High voltage level one set-up time prior to the LOW-to-HIGH clock transition
 $\mathrm{L}=$ Low voltage level
 । = Low voltage level one set-up time prior to the LOW-to-HIGH clock transition
 X = Don't care
 $\uparrow=$ LOW-to-HIGH clock transition
 $\mathrm{NC}=$ No change
 $Z=$ High impedance or "OFF" state

