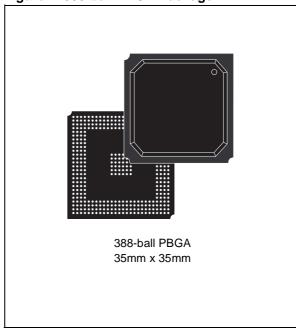


64K x 72-bit Entry NETWORK PACKET SEARCH ENGINE

DATA BRIEFING


FEATURES SUMMARY

- 64K DATA ENTRIES IN 72-BIT MODE
- TABLE MAY BE PARTITIONED INTO UP TO EIGHT (8) OCTANTS (Data entry width in each octant is configurable as 36, 72, 144, or 288 bits.)
- UP TO 100 MILLION SUSTAINED SEARCHES PER SECOND IN 72-BIT and 144-BIT CONFIGURATIONS
- UP TO 50 MILLION SEARCHES PER SECOND IN 36-BIT and 288-BIT CONFIGURATIONS
- SEARCHES ANY SUB-FIELD IN A SINGLE CYCLE
- OFFERS BIT-BY-BIT and GLOBAL MASKING
- SYNCHRONOUS, PIPELINED OPERATION
- UP TO 31 SEARCH ENGINES CASCADABLE WITHOUT PERFORMANCE DEGRADATION
- WHEN CASCADED, THE DATABASE ENTRIES CAN SCALE FROM 496K TO 3968K DEPENDING ON THE WIDTH OF THE ENTRY
- GLUELESS INTERFACE TO INDUSTRY-STANDARD SRAMS
- SIMPLE HARDWARE INSTRUCTION INTERFACE
- IEEE 1149.1 TEST ACCESS PORT
- OPERATING SUPPLY VOLTAGES INCLUDE:

 V_{DD} (Operating Core Supply Voltage) = 1.5V for 66 and 83MSPS; 1.65V for 100MSPS V_{DDQ} (Operating Supply Voltage for I/O) = 2.5 or 3.3V

■ 388 PBGA, 35mm x 35mm

Figure 1. 388-ball PBGA Package

April 2002 1/7

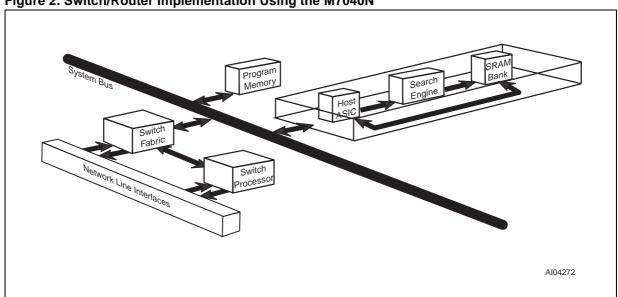
DESCRIPTION

Overview

ST Microelectronics, Inc.'s M7040N Search Engine incorporates patent-pending Associative Processing Technology™ (APT) and is designed to be a high-performance, pipelined, synchronous, 64K-entry network database search engine. The M7040N database entry size can be 72 bits, 144 bits, or 288 bits. In the 72-bit entry mode, the size of the database is 64K entries. In the 144-bit mode, the size of the database is 32K entries, and in the 288-bit mode, the size of the database is 16K entries. The M7040N is configurable to support multiple databases with different entry sizes. The 36-bit entry table can be implemented using the Global Mask Registers (GMRs) building-database size of 128K entries with a single device.

Performance

The Search Engine can sustain 100 million transactions per second when the database is programmed or configured as 72 or 144 bits. When the database is programmed to have an entry size of 36 or 288 bits, the Search Engine will perform at 50 million transactions per second. STM's M7040N can be used to accelerate network protocols such as Longest-prefix Match (CIDR), ARP, MPLS, and other Layer 2, 3, and 4 protocols.


Applications

This high-speed, high-capacity Search Engine can be deployed in a variety of networking and communications applications. The performance and features of the M7040N make it attractive in applications such as Enterprise LAN switches and routers and broadband switching and/or routing equipment supporting multiple data rates at OC-48 and beyond. The Search Engine is designed to be scalable in order to support network database sizes to 3968K entries specifically for environments that require large network policy databases. Figure 4, page 5 shows the block diagram for the M7040N device.

Table 1. Product Range

Part Number	Operating Supply Voltage	Operating I/O Voltage	Speed	Temperature Range				
M7040N-100ZA1	1.65V	2.5 or 3.3V	100MHz	Commercial				
M7040N-083ZA1	1.5V	2.5 or 3.3V	83MHz	Commercial				
M7040N-066ZA1	1.5V	2.5 or 3.3V	66MHz	Commercial				

Figure 2. Switch/Router Implementation Using the M7040N

2/7

Table 2. Signal Names

Symbol	Type ⁽¹⁾	Description										
Clocks and Reset												
CLK_MODE	I	Clock Mode										
CLK2X_CLK1X	I	Master Clock										
PHS_L	I	Phase										
TEST_CO ⁽²⁾	I	Test Output (ST Use Only)										
TEST	I	Test Input (ST Use Only)										
TEST_FM	I	Test Input (ST Use Only)										
RST_L	1	Reset										
TEST_PB ⁽³⁾	I	Test Input (ST Use Only)										
CFG_L	I	Configuration										
C	ommand	and DQ Bus										
CMD[10:0]	1	Command Bus										
CMDV	1	Command Valid										
DQ[71:0]	I/O	Address/Data Bus										
ACK ⁽⁴⁾	Т	READ Acknowledge										
EOT ⁽⁴⁾	Т	End of Transfer										
SSF	Т	SEARCH Successful Flag										
SSV	Т	SEARCH Successful Flag Valid										
MULTI_HIT	0	Multiple Hit Flag										
HIGH_SPEED	I	100MHz Indicator										
CLKTUNE[3:0]	I	PLL Tuner										

SRAM Interface											
SADR[23:0]	Т	SRAM Address									
CE_L	Т	SRAM Chip Enable									
WE_L	Т	SRAM Write Enable									
OE_L	Т	SRAM Output Enable									
ALE_L	Т	Address Latch Enable									
	Cascade	Interface									
LHI[6:0]	1	Local Hit In									
LHO[1:0]	0	Local Hit Out									
BHI[2:0]	I	Block Hit In									
BHO[2:0]	0	Block Hit Out									
FULI[6:0]	I	Full In									
FULO[1:0]	0	Full Out									
FULL	0	Full Flag									
Device Identification											
ID[4:0]	1	Device Identification									
	Sup	plies									
V _{DD}	n/a	Chip Core Supply (1.5V for 66 and 83MSPS; 1.65 for 100MSPS)									
V _{DDQ}	n/a	Chip I/O Supply (2.5 or 3.3V)									
	Test Acc	cess Port									
TDI	I	Test Access Port's Test Data In									
тск	ı	Test Access Port's Test Clock									
TDO	Т	Test Access Port's Test Data Out									
TMS	I	Test Access Port's Test Mode Select									
TRST_L	l	Test Access Port's Reset									

Note: 1. Signal types are: I = Input only; I/O = Input or Output; O = Output; and T = Tristate
 See DESCRIPTIONS FOR CONNECTION DIAGRAM (Figure 3, page 9), page 152 for individual connection details.
 In the previous versions of this specification, this signal was called, "CLK_OUT."
 In previous versions of this specification, this signal was called, "PLL_BYPASS."
 ACK and EOT Signals require a weak, external pull-down resistor of 47 KΩ or 100 KΩ.

Figure 3. Connections

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	1
Α	CLK TUNE3	DQ71	V _{DDQ}	DQ67	DQ63	V _{DDQ}	DQ57	DQ53	DQ51	DQ43	DQ41	DQ37	DQ35	DQ31	V _{DDQ}	DQ25	DQ21	DQ17	V _{DDQ}	DQ9	DQ5	DQ3	TEST_ FM	V _{DDQ}	HIGH_ SPEED	CLK TUNE0	A
В	TDI	v _{ss}	DQ69	DQ65	DQ61	DQ59	DQ55	V _{DDQ}	DQ47	DQ45	DQ39	V _{DDQ}	DQ33	DQ29	DQ27	DQ23	V _{DDQ}	DQ15	DQ11	DQ7	V _{DDQ}	DQ1	TEST_ PB	CFG_L	V _{SS}	SADR 0	В
С	TCK	TMS	V _{DD}	V _{DD}	v _{DD}	V _{DD}	V _{DD}	NC8	DQ49	V _{DDQ}	v _{DD}	v _{DD}	V _{DD}	V _{DD}	V _{DD}	v _{DD}	DQ19	DQ13	NC7	V _{DD}	V _{DD}	v _{DD}	V _{DD}	V _{DD}	SADR 1	V _{DDQ}	С
D	TRST_ L	TDO	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	v _{DD}	V _{DD}	V _{DD}	V_{DD}	v _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	SADR 3	SADR 2	D
Е	ID0	V _{DDQ}	V _{DD}	V _{SS}																			V _{SS}	V _{DD}	SADR 5	SADR 4	Ε
F	ID1	ID2	V _{DD}	V _{SS}																			V _{SS}	V _{DD}	SADR 6	V _{DDQ}	F
G	ID3	ID4	v_{DD}	V _{SS}																			V _{SS}	v _{DD}	SADR 8	SADR 7	G
Н	LHI0	LHI1	NC1	V _{SS}																			V _{SS}	NC6	V _{DDQ}	SADR 9	Н
J	LHI2	LHI3	V _{DDQ}	V _{SS}																			V _{SS}	SADR 11	SADR 12	SADR 10	J
K	LHI6	LHI4	LHI5	V _{SS}																			V _{SS}	SADR 13	V _{DDQ}	SADR 14	К
L	LHO0	LHO1	V _{DD}	V _{DD}							V _{SS}	V _{SS}	v _{SS}	V _{SS}	V _{SS}	V _{SS}							v _{DD}	V _{DD}	SADR 15	SADR 16	L
М	V _{DDQ}	BHI0	V _{DD}	v _{DD}							V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}							v _{DD}	V _{DD}	V _{DDQ}	SADR 17	М
Ν	BHI1	BHI2	V _{DD}	v _{DD}							V _{SS}	V _{SS}	v _{ss}	V _{SS}	V _{SS}	V _{SS}							v _{DD}	V _{DD}	SADR 19	SADR 18	N
Р	BHO0	MULTI_ HIT	V _{DD}	V _{DD}							V _{SS}	V _{SS}	v _{ss}	V _{SS}	V _{SS}	V _{SS}							v _{DD}	v _{DD}	SADR 21	SADR 20	Р
R	V _{DDQ}	BHO1	V_{DD}	V _{DD}							V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	v _{SS}							V _{DD}	V _{DD}	SADR 22	V _{DDQ}	R
Т	BHO2	V _{SS}	V _{DD}	V _{DD}							V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}							V _{DD}	V _{DD}	CLK_ MODE	SADR 23	Т
U	FULI0	V _{DDQ}	FULI1	V _{SS}																			V _{SS}	OE_L	PHS_L	CLK1x/ CLK2x	U
٧	FULI2	FULI3	FULI4	V _{SS}																			V _{SS}	CE_L	V _{DDQ}	WE_L	V
W	V _{DDQ}	FULI5	NC2	V _{SS}																			V _{SS}	NC5	CMDV	ALE_L	w
Υ	FULI6	FULO0	v _{DD}	V _{SS}																			V _{SS}	V _{DD}	CMD1	CMD0	Y
AA	FULO1	V _{DDQ}	v _{DD}	V _{SS}																			V _{SS}	V _{DD}	CMD3	CMD2	AΑ
AB	FULL	ACK	V _{DD}	v _{ss}																			V _{SS}	v _{DD}	CMD5	CMD4	AE
AC	V _{SS}	EOT	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	v _{DD}	V _{DD}	V _{DD}	V _{DD}	V _{DD}	v _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	CMD6	V _{DDQ}	AC
AD	RST_L	V _{DDQ}	v _{DD}	V _{DD}	V _{DD}	V _{DD}	V _{DD}	NC3	V _{DDQ}	DQ46	V _{DD}	v _{DD}	v _{DD}	v _{DD}	v _{DD}	V _{DD}	DQ20	DQ16	NC4	V _{DD}	V _{DD}	V _{DD}	v _{DD}	v _{DD}	CMD8	CMD7	ΑC
ΑE	TEST	V _{SS}	DQ70	V _{DDQ}	DQ64	DQ60	DQ58	DQ54	DQ50	DQ44	DQ42	DQ38	V _{DDQ}	DQ32	DQ28	DQ26	V _{DDQ}	DQ18	DQ12	DQ10	DQ6	V _{DDQ}	DQ0	V _{DDQ}	V _{SS}	CLK TUNE1	AE
AF	TEST_ CO	CLK TUNE2	DQ68	DQ66	DQ62	V _{DDQ}	DQ56	DQ52	DQ48	V _{DDQ}	DQ40	DQ36	DQ34	DQ30	V _{DDQ}	DQ24	DQ22	DQ14	V _{DDQ}	DQ8	DQ4	DQ2	SSV	SSF	CMD10	CMD9	AF
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

Note: This diagram is TOP VIEW perspective (view through package).

4/7

Figure 4. M7040N Block Diagram PHS_L -CLK1X_CLK2X — Comparand Registers[15:0] Global Mask Registers [15:0] RST_L ─► Information and Command Register CLK_MODE -Burst Read Register Burst Write Register Next Free Address Register Search Successful Index Registers [7:0] Compare/PIO Data (All registers are 72-bit-wide) TAP - TAP Controller DQ [71:0] Compare/PIO Data Configurable as SADR [23:0] 128K x 36 64K x 72 CMD [10:0] -32K x 144 OE_L Command Pipeline Address Decode Priority Encode CMDV 16K x 288 Decode Match Logic and and PIO Access Data Array ACK SRAM WE_L Control EOT -Configurable as 128K x 36 CE_L 64K x 72 32K x 144 ALE_L ID [4:0] 16K x 288 Mask Array Full Logic FULL [6:0] -FULL LHI [6:0] -LHO [1:0]

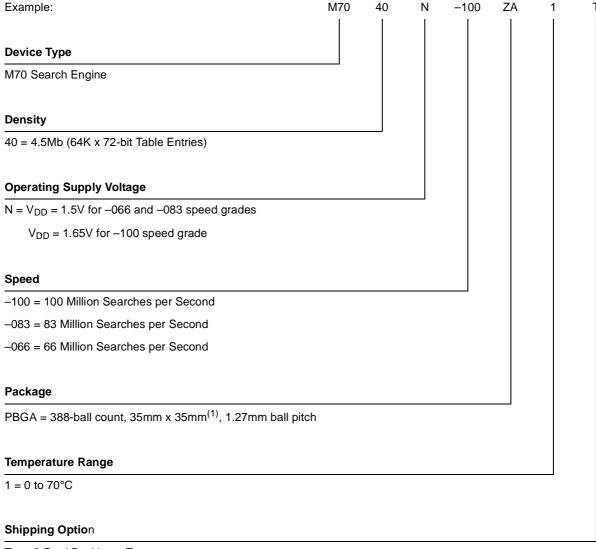
BHI [2:0] -

FULO [1:0]

Arbitration

Logic

BHO [2:0]


SSF

SSV

AI04645

PART NUMBERING

Tape & Reel Packing = T

Note: 1. Where "Z" is the symbol for BGA packages and "A" denotes 1.27mm ball pitch

For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

