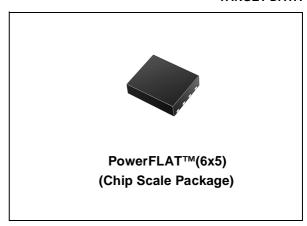


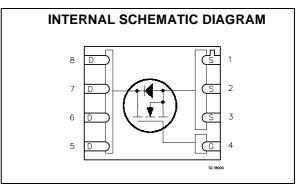
STL20NM20N

N-CHANNEL 200V - 0.11Ω - 20A PowerFLAT™ ULTRA LOW GATE CHARGE MDmesh™ II MOSFET

TARGET DATA

TYPE	V _{DSS}	R _{DS(on)}	I _D
STL20NM20N	200 V	< 0.13 Ω	20 A


- WORLDWIDE LOWEST GATE CHARGE
- TYPICAL $R_{DS}(on) = 0.11\Omega$
- IMPROVED DIE-TO-FOOTPRINT RATIO
- VERY LOW PROFILE PACKAGE (1mm MAX)
- VERY LOW THERMAL RESISTANCE
- LOW GATE RESISTANCE
- LOW INPUT CAPACITANCE
- HIGH dv/dt and AVALANCHE CAPABILITIES


DESCRIPTION

This 200V MOSFET with a new advanced layout brings all unique advantages of MDmesh technology to lower voltages. The device exhibits worldwide lowest gate charge for any given on-resistance.Its use is therefore ideal as primary switch in isolated DC-DC converters for Telecom and Computer applications.Used in combination with secondary-side low-voltage STripFET™ products, it contributes to reducing losses and boosting efficiency.The new PowerFLAT™ package allows a significant reduction in board space without compromising performance.

APPLICATIONS

The MDmesh™ family is very suitable for increasing power density allowing system miniaturization and higher efficiencies

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STL20NM20N	L20NM20N	PowerFLAT	TUBE

June 2003 1/6

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	200	V
V _{GS}	Gate- source Voltage	± 30	V
I _D (2)	Drain Current (continuous) at T _C = 25°C (Steady State) Drain Current (continuous) at T _C = 100°C	20 12.5	A A
I _{DM} (3)	Drain Current (pulsed)	80	Α
P _{TOT} (2)	Total Dissipation at T _C = 25°C (Steady State)	2.5	W
P _{TOT} (4)	Total Dissipation at T _C = 25°C (Steady State)	80	W
	Derating Factor (2)	0.02	W/°C
dv/dt (5)	Peak Diode Recovery voltage slope	10	V/ns

THERMAL DATA

Symbol	Parameter	Тур.	Max.	Unit
Rthj-F	Thermal Resistance Junction-Foot (Drain)		1.56	°C/W
Rthj-amb (2)	Thermal Resistance Junction-ambient	35	50	°C/W
Tj	Max. Operating Junction Temperature	EE to	150	°C
T _{stg}	Storage Temperature	–55 to	150	

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	TBD	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 35$ V)	TBD	mJ

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25~^{\circ}C$ UNLESS OTHERWISE SPECIFIED) ON/OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	200			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3.5	4.2	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 2 A		0.11	0.13	Ω

2/6

ELECTRICAL CHARACTERISTICS (CONTINUED)

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (6)	Forward Transconductance	V _{DS} = 15 V, I _D = 2 A		1.4		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V, } f = 1 \text{ MHz, } V_{GS} = 0$		670 180 12		pF pF pF
Coss eq. (*)	Equivalent Output Capacitance	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$		TBD		pF
R _G	Gate Input Resistance	f = 1 MHz Gate DC Bias = 0 Test Signal Level = 20 mV Open Drain		TBD		Ω

^(*) C_{OSS eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{OSS} when V_{DS} increases from 0 to 80% V_{DSS}

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	V_{DD} = 100 V, I_D = 2 A R_G = 4.7 Ω V _{GS} = 10 V (see test circuit, Figure 3)		TBD TBD		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 160 \text{ V}, I_{D} = 4 \text{ A},$ $V_{GS} = 10 \text{ V}$		19 3.5 11		nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-Voltage RiseTime	$V_{DD} = 100 \text{ V}, I_D = 2 \text{ A},$		TBD		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10 \text{ V}$		TBD		ns
t _c	Cross-Over Time	(see test circuit, Figure 3)		TBD		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				20	Α
I _{SDM} (3)	Source-drain Current (pulsed)				80	Α
V _{SD} (6)	Forward On Voltage	$I_{SD} = 2 A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 2 A, di/dt = 100 A/µs, V_{DD} = 100 V, T_j = 25°C (see test circuit, Figure 5)		89 300 6.5		ns nC A
t _{rr} Q _{rr} IRRM	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 2$ A, di/dt = 100 A/ μ s, $V_{DD} = 100$ V, $T_j = 150$ °C (see test circuit, Figure 3)		TBD TBD TBD		ns nC A

Note: 1. Current Limited by Package. The value is rated according to R_{thj-F} . 2. When Mounted on FR-4 Board of 1inch², 2 oz Cu 3. Pulse width limited by safe operating area 4. The value is rated according to R_{thj-F} . 5. $I_{SD} \le 20A$, $di/dt \le 400A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le T_{JMAX}$ 6. Pulsed: Pulse duration = 300 μs , duty cycle 1.5 %

Fig. 1: Switching Times Test Circuit For Resistive Load

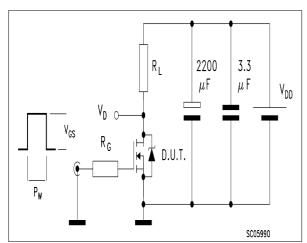
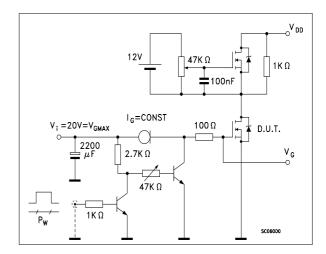
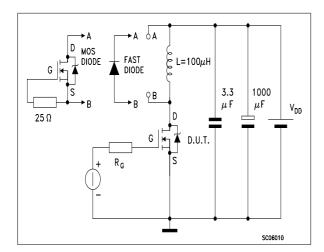
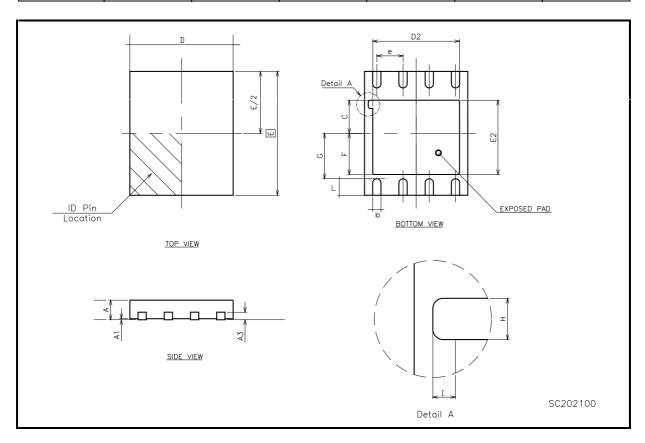


Fig. 2: Gate Charge test Circuit


Fig. 3: Test Circuit For Diode Recovery Behaviour

4/6

PowerFLAT™(6x5) MECHANICAL DATA

DIM.		mm.			inch	
טוועו.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	0.80		1.00	0.031		0.039
A1		0.02			0.001	
b	0.35		0.47	0.014		0.018
С		1.61			0.063	
D		5.00			0.197	
D2	4.15		4.25	0.163		0.167
Е		6.00			0.236	
E2	3.55		3.65	0.140		0.144
е		1.27			0.049	
F		1.99			0.078	
G		2.20			0.086	
Н		0.40			0.015	
I		0.219			0.0086	
L	0.70		0.90	0.028		0.035

5/6

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477. 6/6