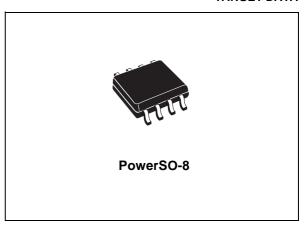


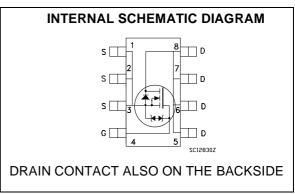
STSJ20NM20N

N-CHANNEL 200V - 0.11Ω - 20A PowerSO-8™ ULTRA LOW GATE CHARGE MDmesh™II MOSFET

TARGET DATA

TYPE	V _{DSS}	R _{DS(on)}	I _D
STSJ20NM20N	200 V	< 0.13 Ω	20 A


- WORLDWIDE LOWEST GATE CHARGE
- TYPICAL $R_{DS}(on) = 0.11 \Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- LOW INPUT CAPACITANCE
- LOW GATE RESISTANCE
- TIGHT PROCESS CONTROL AND HIGH MANUFACTORING YIELDS


DESCRIPTION

This 200V MOSFET with a new advanced layout brings all unique advantages of MDmesh technology to lower voltages. The device exhibits worldwide lowest gate charge for any given on-resistance. Its use is therefore ideal as primary switch in isolated DC-DC converters for Telecom and Computer applications. Used in combination with secondary-side low-voltage STripFETTM products, it contributes to reducing losses and boosting efficiency. The exposed slug reduced the Rthj-c improving the current capability

APPLICATIONS

The MDmesh[™] family is very suitable for increasing power density allowing system miniaturization and higher efficiencies.

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STSJ20NM20N	SJ20NM20N	PowerSO-8	TAPE & REEL

June 2003 1/6

STSJ20NM20N

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	200	V
V _{GS}	Gate-source Voltage	± 30	V
I _D	Drain Current (continuous) at T _C = 25°C Drain Current (continuous) at T _C = 100°C	20 12.5	A A
I _{DM} (2)	Drain Current (pulsed)	80	Α
P_{TOT} Total Dissipation at $T_C = 25^{\circ}C$ P_{TOT} Total Dissipation at $T_C = 25^{\circ}C$ (1)		70 3	W W
dv/dt (3)	Peak Diode Recovery voltage slope	10	V/ns

THERMAL DATA

Rthj-c	Thermal Resistance Junction-case Max	1.8	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max (1)	42	°C/W
Tj	Max. Operating Junction Temperature	150	°C
T _{stg}	Storage Temperature	- 55 to 150	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	TBD	А
E _{AS} Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 35 V)		TBD	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) ON/OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	200			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 10	μA μA
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30V			100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3.5	4.2	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 2 A		0.11	0.13	Ω

2/6

ELECTRICAL CHARACTERISTICS (CONTINUED)

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (4)	Forward Transconductance	V _{DS} = 15 V _, I _D = 2 A		1.4		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0		670 180 12		pF pF pF
Coss eq. (*)	Equivalent Output Capacitance	V _{GS} = 0V, V _{DS} = 0V to 400V		TBD		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		TBD		Ω

^(*) $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	V_{DD} = 100 V, I_{D} = 2 A R_{G} = 4.7 Ω V _{GS} = 10 V (see test circuit, Figure 3)		TBD TBD		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 160 \text{ V}, I_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}$		19 3.5 11		nC nC nC

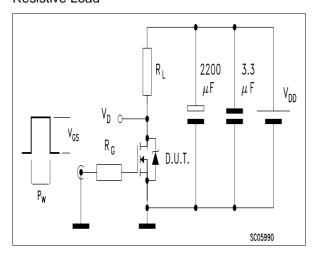
SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-Voltage Rise Time	$V_{DD} = 100 \text{ V}, I_D = 2 \text{ A},$		TBD		ns
`t _f	Fall Time	$R_G = 4.7\Omega, V_{GS} = 10 \text{ V}$		TBD		ns
t _c	Cross-Over Time	(see test circuit, Figure 3)		TBD		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				20 80	A A
V _{SD} (4)	Forward On Voltage	I _{SD} = 2 A, V _{GS} = 0			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 2 A, di/dt = 100 A/µs, V_{DD} = 100 V, T_j = 25°C (see test circuit, Figure 5)		89 300 6.5		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 2 A, di/dt = 100 A/ μ s, V_{DD} = 100 V, T_j = 150°C (see test circuit, Figure 5)		TBD TBD TBD		ns nC A

Note: 1. When mounted on FR4 Board with 1inch² pad, 2oz of Cu, $t \le 10$ sec.


- Wilst middled with The Board with Thirling pad, 202 of 6
 Pulse width limited by safe operating area
 I_{SD} ≤ 20A, di/dt ≤ 400A/µs, V_{DD} ≤ V_{(BR)DSS}, T_J ≤ T_{JMAX}
 Pulsed: Pulse duration = 400 µs, duty cycle 1.5 %

477.

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

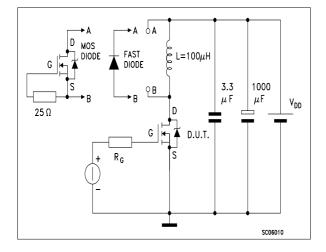
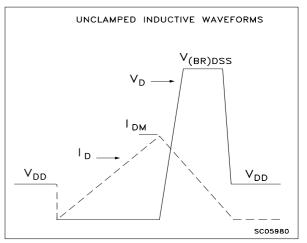
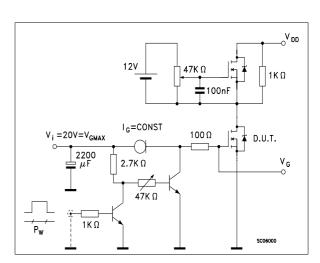
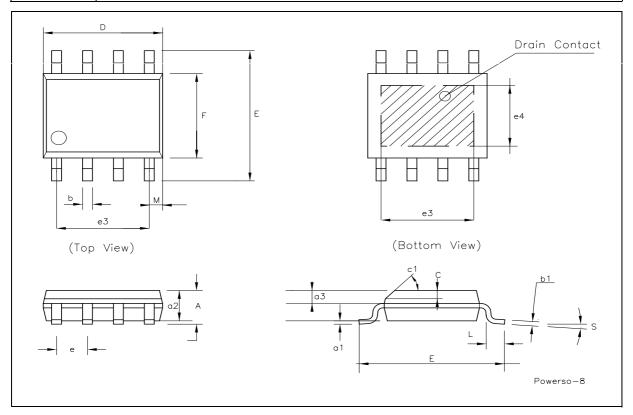


Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

4/6

PowerSO-8™ MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
а3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45°	(typ.)		
D	4.8		5.0	0.188		0.196
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
e4		2.79			0.110	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8° (max.)		

5/6

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477. 6/6