
1

Copyright Cirrus Logic, Inc. 2000
(All Rights Reserved)P.O. Box 17847, Austin, Texas 78760

(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com

AN181

Application Note

USING THE CRYSTAL® CS8900A IN 8-BIT MODE
By James Ayres

Introduction
The CS8900A is a good candidate for designs with
an 8-bit data bus. Because of its small size and
built-in filters the chip will take up a minimum of
board space while providing a cost effective, high
performance Ethernet connection. This application
note shows how to use the CS8900A in 8 bit mode,
including software information for the programmer
and a typical connection diagram for the design en-
gineer.

References
The designer should familiarize himself with the
Connecting to non-ISA bus systems chapter in the
CS8900A Technical Reference Manual, Low cost,
high performance Ethernet Controller for non-
ISA systems. This chapter is a reference on how to
easily connect the chip to a non-ISA processor. It
includes diagrams connecting the CS8900A to a
MC68302, a Cirrus Logic CL-PS7111, and a Hita-
chi SH3. That chapter contains most of the data
needed for the design engineer. The data sheet is
the source for functional descriptions of the regis-
ters, receive operation, transmit operation, timing
etc. Only the 8-bit specific issues will be covered
in this application note.

Software Drivers
There are many software drivers available for the
CS8900A in 16-bit mode, including VxWorks™,
Psos®, Linux®, Packet Driver and ATI Nucleus.
Source code for the VxWorks, Linux, and Psos are
available on the Cirrus Website. The Linux driver,
in particular, is a good starting point for writing a
custom driver in C. Porting any driver for 8-bit op-
eration is the customer’s responsibility.

I/O Ports
In 8 bit mode the CS8900A is accessed through its
eight 16 bit I/O ports.

In a non-ISA system these ports are usually memo-
ry mapped into standard system memory. Please
note that the driver should read or write both bytes
when accessing any CS8900A status or event reg-
ister.

Frame Transmission
Transmission and reception of frames is done
through these data ports. The basic steps in trans-
mitting a frame are 1) bid for buffer space on the
chip by writing the transmit command to the TxC-
MD port and the length to TxLength port then
checking the BusSt register. 2) if space is available
begin writing the data, a byte at a time, to Re-
ceive/Transmit data port 0. Refer to the section I/O
Space Operation of the data sheet for more details.

For instance, the CS8900A is at its default I/O lo-
cation of 300h. To transmit a frame that is 81 bytes
in length the driver would first write the transmit
command 00C0h (Start transmitting after all bytes
transferred) to the TxCMD port. This is done by
writing the low order byte, C0h, to 304h then writ-

Offset Type Description
0000h Read/Write Receive/Transmit Data (Port 0)
0002h Read/Write Receive/Transmit Data (Port 1)
0004h Write-only TxCMD (Transmit Command)
0006h Write-only TxLength (Transmit Length)
0008h Read-only Interrupt Status Queue
000Ah Read/Write PacketPage Pointer
000Ch Read/Write PacketPage Data (Port 0)
000Eh Read/Write PacketPage Data (Port 1)

Table 1. I/O Mode Mapping

JAN ‘00
AN181REV1

AN181

2 AN181REV1

ing the high order byte, 00h, to 305h. Next write
0051h (81 decimal) to the TxLENGTH port. Low
byte, 51h, to 306h then high byte, 00h, to 307h.

Now check to see if transmit space is available.

This is done by checking the BusST register, bit 8.
To check this register you will use the packet page
pointer port and the packet page data port.

Write 0138h to Packet Page Pointer (starts at 30Ah)
then read the Packet Page Data Port 0 (starts at
30Ch). If bit 8 (Rdy4TxNow) is set then you can
start transferring data to Transmit Data Port 0. Do
so in the following manner: write the first byte to
300h, the second byte to 301h, byte 3 to 300h, byte
4 to 301h and so on until the whole frame is written.
The chip will automatically send the frame after the
last byte is written.

Frame Reception
The host is notified of an incoming frame by poll-
ing the Rx Event Register. When the host is aware
of an incoming frame the software should read the
frame data following these steps (assuming I/O
base 300h):

• read the RxStatus word (same data as RxEvent,
register) from data port 0. Read this high order
byte 301h first, then low order byte 300h.

Note: it is very important to read the RxStatus
and RxLength high order byte first.

• read the RxLength word (the frame length)
from data port 0. Read this high order byte
301h first, then low order byte 300h.

• begin reading the frame data, 300h then 301h,
300h then 301h until the entire frame has been
transferred to host memory.

Schematic and Layout Review Service
Prevent problems early in the design phase of your
product. Have your schematic or layout reviewed
free of charge by our experts before you build your
board. Call Applications Engineering at (512) 442-
7555 or send e-mail to ethernet@crystal.cir-
rus.com.

Unsupported functions in 8 bit mode
• Interrupts are not supported. Polled mode must

be used.

• The DMA engine only uses 16 bit memory ac-
cesses and does not support 8 bit transfers.

• The packet page pointer has an auto increment
feature that cannot be used in 8 bit mode.

• An EEPROM is not supported. Most 8 bit de-
signs should not require one and can eliminate
the added cost.

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/
Crystal is a trademark of Cirrus Logic, Inc.
Linux is a registered trademark of Linus Torvalds
PSOS is register trademark of Integrated System Inc.
VxWorks is a registered trademark of Wind River Systems, Inc.
All other names are trademarks, registered trademarks, or service marks of their respective companies.
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of
any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights
of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of
this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or
otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no
part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical,
photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture
or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing
in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.

AN181

AN181REV1 3

Typical Connection Diagram

EECS

EEDATAOUT

EESK

SA[10:19]

MEMW

MEMR

IOW

IOR

REFRESH

SBHE

SD[8:15]

INTRQ0

INTRQ1

RXD-

RXD+

TXD-

TXD+

DO-

DO+

CI-

CI+

DI-

DI+

LANLED

LINKLED

EEDATAIN

AEN

RESET

INTRQ2

INTRQ3

DMARQ0

DMACK0

DMARQ1

DMACK1

DMARQ2

DMACK2

MEMCS16

IOCHRDY

68 pF

1

3

6

8

24.9 Ω, 1%

24.9 Ω, 1%

92

91

88

87

100 Ω, 1%

RJ45
16

14

11

9

6

3

2

1

84

82

81

79

83

80

680 Ω

680 Ω

XTAL1 XTAL2 SLEEP TEST RES
3

5

4

6

28

62

61

29

7

8

10

97 98 93

4.99 kΩ, 1%20 MHz

Vcc

4.7 kΩ

CS8900

CHIPSEL

IOCS16

49

63

75

36

34

64

33

32

30

35

31

15

13

14

16

11

12

99

100

ELCS

10 BASE T
Isolation

Transformer

BSTATUS/HCI

Vcc

77 76

78

20.1 µF

70.1 µF

Vcc

SA[0:9]10SA[0:9]

IOW

IOR

SD[0:7]8

CHIPSEL

RESET

SD[0:7]

A

AN181

4 AN181REV1

SAMPLE POLLING ROUTINE

Pseudo Code

#define EventMask = 0xFFC0
#define RegisterMask = 0x003F
#define RxEvent = 0x0004
#define TxEvent = 0x0008
#define BufEvent = 0x000C

Poll-Chip{

unsigned short Event;

Event = Poll-Registers()
While Event <> 0x0000 {

Switch (RegisterMask & Event) {
Case RxEvent:

result = Process-RxEvent(Event);
break;

Case TxEvent:
result = Process-TxEvent(Event)
break;

Case BufEvent:
result = Process-BufEvent(Event);
break;

} // End Switch
Event = Poll-Registers()

} // End While
} // End Poll-Chip

Poll-Registers{

unsigned short Event;

Event = Read-RxEventRegister();
If (EventMask & Event) {

return Event;}

Event = Read-TxEventRegister()
If (EventMask & Event) {

return Event;}

Event = Read-BufEventRegister()
If (EventMask & Event) {

return Event;}

Return 0x0000
// End Poll-Registers

}

• Notes •

