NMavericK
o AN189

from
-w CIRRUS LOGIC

Application Note

Interfacing SRAM to EP7xxx Series Microcontrollers

NavVeriCK
~ 4
from

w CIRRUS LOGIC

o
|
(o'
|
=
(@)
a
|

Note: Cirrus Logic assumes no responsibility for the attached information which is
provided “AS IS” without warranty of any kind (expressed or implied).

This document contains information for a new product.

Prellmlnary Product Information Cirrus Logic reserves the right to modify this product without notice.

P.O. Box 17847, Austin, Texas 78760 Copyright © Cirrus Logic, Inc. 2000 SEP ‘00
(512) 445 7222 FAX: (512) 445 7581 (All Rights Reserved) AN189REV1
http://www.cirrus.com 1

nMavericK
- AN189

-w CIRRUS LOGIC
TABLE OF CONTENTS
1. INTRODUCTIONcccceeuueuee 3
2. GENERAL DISCUSSION 3
3. DESIGN OF THE BYTE DECODERS ceresnesssnssnnessnee 3
3.1 Decoding X16 SRAMooooiiiiiieeie ettt ettt stee s bee e seveeeseneesaneeenns 4
3.2 Decoding X32 SRAMooiiiiiie ettt ettt ettt s 6
4. LISTING 1 SAMPLE PROGRAM ceresnncssnessnesaneessaes 9
LIST OF FIGURES
Figure 1. Listing 1 Timing DIa@ramc.c.ccciieeiiiieiiiiieniieeeiee e esieeeseeeeireeeereeeanee e 4
Figure 2. Schematic for Three Types of SRAM Interfaces (Landscape View).................. 5
Figure 3. x32 SRAM Interface with Decoding of Four Byte Lanes.........ccccccoceeeeveeniennces 8
LIST OF TABLES
Table 1. Truth Table for X16 MemOry ACCESSES....c.c.eerurirrirrrienierieenieereeneesreereeseesneens 4
Table 2. Truth Table for X32 MemOTy ACCESSES.....ccvrvirrriieriieeeiieerieeenreesereesseeenseesnneens 6
Table 3. Karnaugh Graph #!.......ccccveeeiiiiiieeeeceeee et 6
Table 4. Karnaugh Graph #2.......ccccoooiiiiiiiiiieeee e 7
Table 5. Karnaugh Graph #3ccveeiiiiiieeiieeeeee ettt e 7
Table 6. Karnaugh Graph #4...........coooiiiiiiieiieeeeee ettt 7

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS |S” without warranty of any
kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third
parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publi-
cation may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise)
without the prior written consent of Cirrus Logic, Inc. ltems from any Cirrus Logic web site or disk may be printed for use by the user. However, no part of the
printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photo-
graphic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or
sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in
this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.

2 AN189REV1

NMaveriCK
~ 4
from

CIRRUS LOGIC

AN189

1. INTRODUCTION

This application note explains how to interface
SRAM memory to the bus of Cirrus Logic ARM-
based microcontrollers. The bus controller on these
devices can interface to x8-, x16-, or x32-bit wide
data memory. However, when using a x16 or x32
bus configurations, it requires some external
decoding logic.

2. GENERAL DISCUSSION

The EP7xxx microcontrollers are capable of
interfacing to a wide variety of SRAM memory
devices. Extra SRAM may be required if the
internal SRAM provided in the EP7xxx is
insufficient for a particular application. SRAM can
also be used to hold program memory. Since some
SRAM devices can have fast access speeds, that
can help to improve overall system performance.
However, the ARM architecture does not support
unaligned accesses, which means that accessing
bytes on non-aligned addresses require an external
decoder to access individual "byte-lanes". In most
situations, external logic to decode the byte lanes
may be required.

Three types of SRAM configurations are shown in
Figure 2. The first configuration is for x8 memory.
In this case, no extra decoding logic is needed. For
reading and storing 8-bit data, this scheme works
well as each byte is accessed for each data access
cycle, assuming a STRB or LDRB instruction is
used (store byte or load byte). Furthermore, the
byte data can accessed on any byte-bounded
memory location. When using x8 memory for
program storage, the processor has to fetch 4 bytes
to build up an instruction word (or two bytes in the
case of a Thumb instruction) which can slow down
performance by a factor of four.

The second SRAM memory bank example in
Figure 3 is a x16 SRAM with no byte decoding
since both nUB and nLB (upper-byte and lower-
byte) signals are tied low. This limits the processor
from using byte data since it can only access data

on a half-word or on a 16-bit boundary. This means
that the programmer must take care to cast all char
data as half-word which pads the upper byte with
dont cares thereby wasting half of available
memory space. But it can also be dangerous,
especially when using vendor provided libraries
that expect data to be on byte-boundaries. Byte
decoding of x16 SRAM may not be necessary
when using SRAM to store instructions only. The
reason is to take advantage of the faster access
times of SRAM verses the slower memory access
time of x16 Flash or EPROM. But it will still take
two memory fetches for each ARM instruction (or
one for Thumb).

It is possible to use x32 SRAM without byte
decoding, but it is not recommended. In theory, one
could use non-decoded x32 SRAM for storing
instructions (for speed improvement). But in this
case, Thumb instructions must be aligned on word
boundaries which is impractical. If using this type
of memory for data, then only 32-bit words can be
reliably accessed.

In conclusion, it is generally recommended that
when using x16 and x32 external SRAM, each byte
lane be fully decoded.

3. DESIGN OF THE BYTE DECODERS

The program in Listing 1 (See “Listing 1 Sample
Program”) is designed to write 4 bytes, 4 half-ints,
and 4 ints to a hypothetical memory device. Chip
select #5 is used which gives a default address
range starting at location 0x5000.0000 (this can be
changed by the MMU). The results were sampled
using a HP 16500B logic analyzer and is displayed
in Figure 1. The signals sampled are: A0 and Al
(address bits), nCS5 (chip select 5), nMOE (output
enable), HALFWORD and WORD. From the
waveforms, truth tables can be derived and logic
synthesized.

The first four access are byte oriented, the next four
are word (32-bit) oriented, and the last four are

AN189REV1

NnaveriCKkK

- AN189
-w CIRRUS LOGIC
[1M Sample LA B] (Haveform 1] (Pu:q. Euntrn]] (Eance]] (Eun]
Accumulate Current Sample Period = 4,000 ns Center
off Mext Sample Period = 4.000 ns Screen

([sec/Div Celay 1
L 200 ns 2,046 us

Markers
off

Acquisition Time
17 Feb 2000 15:43:09

NCSS [—

i

L
: |

JU- U Ul

MMOE

HALFH

HORD

IR
| T
I
L

Figure 1. Listing 1 Timing Diagram

half-word accesses. Each access is denoted by a
negative signal on NCS5.

3.1 Decoding x16 SRAM

From Figure 1, it can be seen that a truth table as
shown in Table 1 can be constructed to provide

By inspection and by applying DeMorgan’s
Theorem, the equations for a byte decoder are
listed below:

InLB = !(W + HW + !A0)
InUP = !(W + HW + A0)

decoding of byte accesses. In this case, nLB and The schematic in Figure 2 has logic that
nUB are signals applied to a x16 SRAM to decode implements the equations above.
the lower and upper bytes, respectively.
ACCESS WORD | HALF WORD A0 nLB nUP

Word 1 X X 0 0

Half 0 1 X 0 0

Byte 0 0 0 0 1

Byte 0 0 1 1 0

Table 1. Truth Table for x16 Memory Accesses

4 AN189REV1

AN189

from

~ 4

CIRRUS LOGIC

NnaveriCKkK

d0SL/91821XnZ9S!
a p—m8M8M8™™

ano dn
¥ { ano o
(7 > br— som
e zsou
M Ly MY
w f——
S10/1 P B — T
a8 410/ O - A—
E|8 £10/1 I &|m_k
nB|3 z10/1 v ~«|n_k
N.E|~n 1o/1 1% §|n_k
E_|—n 010/1 o 3|n_k
E|on 60/1 8vY 0N|E
.B|QN 00_ 8V 1
B|2 L0/1 7Y ~¢|ak
B|o- 90/ ov ?|wn
.B|v— 50/1 v :|hK
B|n- »0/ woE v
.B|_..: £0/ v SY
B|a z0/1 v ¥
10/1 mm v £Y
B @ 8 o f w

wlz en

onsn_n.‘n

Bujpoosg supT

2148 yum AVYS 9iIx

LTXNWL
LTXNWL
st
[ovi zL |z
aw [} _ot | ov
.
LTXNWL
[
dnu 9 _# QMOM
3 GHOMATVH
ES dOSL/918Z1XNZ9S!I I_I"
a o
ano anppE—
e oy
z| I % & 30NU
wm oo AsQu
(1 IMNY NY¥S 8Xese
y A S T—

S10/1 P10 = S——' »—
v-—b|on €10/1 Y pN|m.r< %) 1
n5|...n 210/1 2 ~N|P< s
uB|un 1o/1 1Y §|nr< W
E_|-n 010/ o o«|w_k <V o«|nr<
ug___ €] g ev [WV v P v
.B|mm 20/1 8y Tp_k Y m«|wr<
80 8¢ o/ P .) ow X LV
49 9t 8_ ov ey =008y (32 (€2 oIy
a® ne——&) —
50 0/ w L e 8Y
h 1] £l £0/1 v i*14 2 — 9a ov | § Ly
£Q [1] z0/\ v 2 hd') 9 02| ca v |9 9y
20 10/1 55 w £Y BL-F ¥a w SY
10 00/1 ov F— 2o 20 8l] o v Y
oa L S W £0 L] 2 v | £V

g2 en 82w w zy
40 ¥ ov 1Y
0a €L . [4 ov
o?n_n..n
AVYS 8X

buipooaq aup
o¥kg o/m NV¥S 9Ix

Figure 2. Schematic for Three Types of SRAM Interfaces (Landscape View)

AN189REV1

NnaveriCKkK
v AN189

from
-w CIRRUS LOGIC
L

3.2 Decoding x32 SRAM

Typically, two x16 devices would be used to create a x32 SRAM memory block. In this case, AO and Al
are used to decode the byte lanes along with HALFWORD and WORD. The truth table is listed below in
Table 2:

Access WORD | HALFWORD A0 A1 nBO nB1 nB2 nB3
Word 1 X X X 0 0 0 0
Lower Half 0 1 X 0 0 0 1 1
Upper Half 0 1 X 1 1 1 0 0
Byte 0 0 0 0 0 0 1 1 1
Byte 1 0 0 1 0 1 0 1 1
Byte 2 0 0 0 1 1 1 0 1
Byte 3 0 0 1 1 1 1 1 0

Table 2. Truth Table for x32 Memory Accesses

The logic to implement the byte decoding is more complicated, but can be easily realized using a low cost
PAL or generic logic, such as a GAL16V8 or PAL16L38. The equations are derived using Karnaugh graphs.
The equations are not fully reduced to minimum terms. The terms W and HW stand for WORD and
HALFWORD, respectively. The schematic in Figure 3 illustrates one method.

For nBO:
A0, Al

00 01 11 10

W, HW 00 0 1
01 0 0
1 0 0 0 0

10 0 0 0 0

Table 3. Karnaugh Graph #!

nBO = (IW * Al) + (!W * [HW * AQ)

6 AN189REV1

NnaveriCKkK
v AN189

from

-w CIRRUS LOGIC
For nB1:
AQ, Al
_\00\ 01
W, HW 00 _—/l)
01 0 0

11 0 0 0 0

10 0 0 0 0

Table 4. Karnaugh Graph #2

nB1 = (!W * HW * 1A0Q) + (!W * THW * AQ) + (IW * ITHW * |Al)
For nB2:
AO, Al

o
1 1

W, HW 00|
01 1 0 0 1

1 0 0 0 0

10 0 0 0 0

Table 5. Karnaugh Graph #3

nB2 = (W * HW *!A1) + (\W * THW * A0Q) + (W * |[HW * A1)
For nB3:

W, HW 00 | 1 1 0 1
o1 1 0 0 1
11 0 0 0 0
10 | O 0 0 0

Table 6. Karnaugh Graph #4

nB3 = (IW * [HW * |A0) + (IW * !Al)

AN189REV1 7

NnaveriCKkK
v AN189

from
CIRRUS LOGIC

3:rvoD x32 SRAM with full byte =~
decoding T
11/33
U2s 11ls3
A2 5 cve z DO u28
Az glA0 CC VOO e ng A2 5| ove z D16
A4 L o N I a—Y A3 4]A0 CC 100 [g D17
A5 > A2 1102 10— D3 A4 a3 A1 1/01 q 8
A6] A3 1103 [z yi . R 1102 T35 9
A7] A4 1104 [y 5 A6] A3 1103 [ya 20
A8 4n] A5 1105 [A A7 | Al 1104 [~ 51
A9 >] A6 1106 [1a - AB 23] A5 1105 [y 55
AlD o7 | A7 1107 [2g s A9] A6 1106 [fa 53
XTI 26 A8 /08 55 Do A10 o7 A7 1107 [T5q D24
A12 25 | A9 1/09 [Ta3 D10 A11 o5 | A8 /08 [Tan D25
A13 22| A10 11010 [Ta5 D11 A12 o5 | A9 1109 ™54 D26
Al4 5 | Al 11011 [Ta2 D12 A13 o4 | A10 /1010 735 D27
Als o1 A12 o12 52 D13 AT4 5| ATt Vo115 D28
AlG o] A13 1013 [~ Di4 AlS 5] A12 /012 52 D29
AlZ o] Al4 1014 [~5g Di5 ALR 5] A13 1013 [“57 D30
ALS m] Al5 1/015 AL7 ‘o Al4 11014 [“ag D31
A16 23 AlR 1a] Al5 1/015
NC X 53 Al6 23
P A 6 WE NC DMWE 474 NC I 28
CE 12 nCSz s WE NC
q oE GND 24 CE 12
—=42g up GND OMOE 414 p GND
—aad P 4049 up GND [
———————39
1S62Ux12816/TSOP e |
- 1S62Ux12816/TSOP e

u29
HALFWORD 2 12 nB1
HALF 3! 0/Q 73 nB0
AQ 2| ! I0/Q T4 nB3
Al 5 : :;8;8 15 nB2
call 1o [
sl ioa X
9
I 1/0/Q
1
1/CLK
1 VoE
GAL16V8B

,|||

Figure 3. x32 SRAM Interface with Decoding of Four Byte Lanes

8 AN189REV1

NnaveriCKkK
v AN189

from
-w CIRRUS LOGIC
L

4. LISTING 1 SAMPLE PROGRAM

The program set out below in this section was used to read 8, 32, and 16-bit data from the EP72xx. The
timing diagram on shown in Figure 1 is a print out from a logic analyzer showing the results.

//byte, int, and half word access program
#Define byte unsigned char

int

main (void)

byte * mem;

int * mem32;

byte a,b,c,d;

int e,f,g,h;

short * memlé6;

short 1i,7.,k,1;

Yhile(l)

//Set start address to 0x5000.0000 and read four bytes
mem = (byte*)0x50000000;
a=*mem;

mem++ ;

b=*mem;

mem++ ;

c=*mem;

mem++ ;

d=*mem;

//Next, reset 32 bit pointer and read in four words
mem32 = (int*)0x50000000;
e=*mem32;

mem32++;

f=*mem32;

mem32++;

g=*mem32;

mem32++;
h=*mem32;

//Finally, define a 16-bit pointer and read in four half-words
(short)

memlé = (short *)0x50000000;

i=*memlé6;

memlé++;

j=*memlé6 ;

memlé++;

k=*memlé6;

memlé++;

l=*memlé6;

}

AN189REV1 9

NAVeriCKkK

from
E w ! CIRRUS LOGIC

