

DSP56F805

Technical Data DSP56F805 16-bit Digital Signal Processor

- Up to 40 MIPS at 80MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- Hardware DO and REP loops
- MCU-friendly instruction set supports both DSP and controller functions: MAC, bit manipulation unit, 14 addressing modes
- $31.5K \times 16$ -bit words Program Flash
- 512×16 -bit words Program RAM
- $4K \times 16$ -bit words Data Flash
- $2K \times 16$ -bit words Data RAM
- $2K \times 16$ -bit words Boot Flash

- Up to 64K × 16-bit words each of external program and data memory
- Two 6-channel PWM Modules
- Two 4-channel, 12-bit ADCs
- Two Quadrature Decoders
- CAN 2.0 B Module
- Two Serial Communication Interfaces (SCIs)
- Serial Peripheral Interface (SPI)
- Up to four General Purpose Quad Timers
- JTAG/OnCETM port for debugging
- 14 Dedicated and 18 Shared GPIO lines
- 144-pin LQFP Package

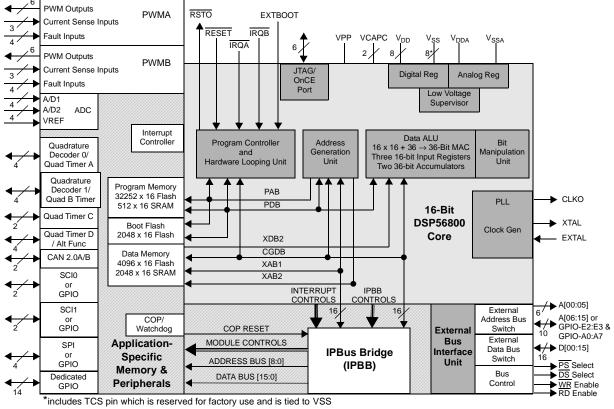


Figure 1. DSP56F805 Block Diagram

Part 1 Overview

1.1 DSP56F805 Features

1.1.1 Digital Signal Processing Core

- Efficient 16-bit DSP56800 family DSP engine with dual Harvard architecture
- As many as 40 Million Instructions Per Second (MIPS) at 80MHz core frequency
- Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)
- Two 36-bit accumulators, including extension bits
- 16-bit bidirectional barrel shifter
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Three internal address buses and one external address bus
- Four internal data buses and one external data bus
- Instruction set supports both DSP and controller functions
- Controller style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/OnCE debug programming interface

1.1.2 Memory

- Harvard architecture permits as many as three simultaneous accesses to program and data memory
- On-chip memory including a low cost, high volume flash solution
 - 31.5K × 16 bit words of Program Flash
 - 512 × 16-bit words of Program RAM
 - 4K×16-bit words of Data Flash
 - 2K × 16-bit words of Data RAM
 - 2K × 16-bit words of Boot Flash
- Off-chip memory expansion capabilities programmable for 0, 4, 8, or 12 wait states
 - As much as $64K \times 16$ bits of data memory
 - As much as $64K \times 16$ bits of program memory

1.1.3 Peripheral Circuits for DSP56F805

- Two Pulse Width Modulator modules each with six PWM outputs, three Current Sense inputs, and four Fault inputs, fault tolerant design with dead-time insertion; supports both center- and edge-aligned modes
- Two 12-bit Analog-to-Digital Converters (ADC) which support two simultaneous conversions; ADC and PWM modules can be synchronized
- Two Quadrature Decoders each with four inputs or two additional Quad Timers

- Two General Purpose Quad Timers totaling six pins: Timer C with two pins and Timer D with four pins
- CAN 2.0 B Module with 2-pin port for transmit and receive
- Two Serial Communication Interfaces, each with two pins (or four additional GPIO lines)
- Serial Peripheral Interface (SPI) with configurable four-pin port (or four additional GPIO lines)
- 14 dedicated General Purpose I/O (GPIO) pins, 18 multiplexed GPIO pins
- Computer Operating Properly (COP) watchdog timer
- Two dedicated external interrupt pins
- External reset input pin for hardware reset
- External reset output pin for system reset
- JTAG/On-Chip Emulation (OnCE™) module for unobtrusive, processor speed-independent debugging
- Software-programmable, Phase Locked Loop-based frequency synthesizer for the DSP core clock

1.1.4 Energy Information

- Fabricated in high-density CMOS with 5V tolerant, TTL-compatible digital inputs
- Uses a single 3.3V power supply
- On-chip regulators for digital and analog circuitry to lower cost and reduce noise
- Wait and Stop modes available

1.2 DSP56F805 Description

The DSP56F805 is a member of the DSP56800 core-based family of Digital Signal Processors (DSPs). It combines, on a single chip, the processing power of a DSP and the functionality of a microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost, configuration flexibility, and compact program code, the DSP56F805 is well-suited for many applications. The DSP56F805 includes many peripherals that are especially useful for applications such as motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and control, automotive control, engine management, noise suppression, remote utility metering, and industrial control for power, lighting, and automation.

The DSP56800 core is based on a Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The microprocessor-style programming model and optimized instruction set allow straightforward generation of efficient, compact code for both MCU and DSP applications. The instruction set is also highly efficient for C compilers to enable rapid development of optimized control applications.

The DSP56F805 supports program execution from either internal or external memories. Two data operands can be accessed from the on-chip Data RAM per instruction cycle. The DSP56F805 also provides two external dedicated interrupt lines, and up to 32 General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.

The DSP56F805 DSP controller includes 31.5K words (16-bit) of Program Flash and 4K words of Data flash (each programmable through the JTAG port) with 512 words of Program RAM and 2K words of Data RAM. It also supports program execution from external memory (64K).

The DSP56F805 incorporates a total of 2K words of Boot Flash for easy customer-inclusion of fieldprogrammable software routines that can be used to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can be independently bulk-erased or erased in page sizes of 256 words. The Boot Flash memory can also be either bulk- or page-erased.

Key application-specific features of the DSP56F805 include the two Pulse Width Modulator (PWM) modules. These modules each incorporate three complementary, individually programmable PWM signal outputs (each module is also capable of supporting six independent PWM functions for a total of 12 PWM outputs) to enhance motor control functionality. Complementary operation permits programmable dead-time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge- and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors), both BDC and BLDC (Brush and Brushless DC motors), SRM and VRM (Switched and Variable Reluctance Motors), and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard opto-isolators. A "smoke-inhibit", write-once protection feature for key parameters and a patented PWM waveform distortion correction circuit are also provided. Each PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to synchronize the ADCs.

The DSP56F805 incorporates two separate Quadrature Decoders capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast and slow moving shafts. The integrated watchdog timer in the Quadrature Decoder can be programmed with a timeout value to alarm when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded.

This DSP controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCI), one Serial Peripheral Interface (SPI), and four Quad Timers. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. A Controller Area Network interface (CAN Version 2.0 A/B-compliant), an internal interrupt controller and 14 dedicated GPIO are also included on the DSP56F805.

1.3 "Best in Class" Development Environment

The SDK (Software Development Kit) provides fully debugged peripheral drivers, libraries and interfaces that allow programmers to create their unique C application code independent of component architecture. The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging. A complete set of Evaluation Modules (EVMs) and development system cards support concurrent engineering. Together, the SDK, CodeWarrior, and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.

1.4 Product Documentation

The four documents listed in **Table 1** are required for a complete description and proper design with the DSP56F805. Documentation is available from local Motorola distributors, Motorola semiconductor sales offices, Motorola Literature Distribution Centers, or online at <u>www.motorola.com/semiconductors/dsp</u>.

Торіс	Description	Order Number
DSP56800 Family Manual	Detailed description of the DSP56800 family architecture, and 16-bit DSP core processor and the instruction set	DSP56800FM/D
DSP56F801/803/805/ 807 User's Manual	Detailed description of memory, peripherals, and interfaces of the DSP56F801, DSP56F803, DSP56F805, and DSP56F807	DSP56F801-7UM/D
DSP56F805 Technical Data Sheet	Electrical and timing specifications, pin descriptions, and package descriptions (this document)	DSP56F805/D
DSP56F805 Product Brief	Summary description and block diagram of the DSP56F805 core, memory, peripherals and interfaces	DSP56F805PB/D

1.5 Data Sheet Conventions

This data sheet uses the following conventions:

- OVERBARThis is used to indicate a signal that is active when pulled low. For example, the RESET pin is
active when low.
- "asserted" A high true (active high) signal is high or a low true (active low) signal is low.

"deasserted" A high true (active high) signal is low or a low true (active low) signal is high.

Examples:	Signal/Symbol	Logic State	Signal State	Voltage ¹
	PIN	True	Asserted	V _{IL} /V _{OL}
	PIN	False	Deasserted	V _{IH} /V _{OH}
	PIN	True	Asserted	V _{IH} /V _{OH}
	PIN	False	Deasserted	V _{IL} /V _{OL}

1. Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

Part 2 Signal/Connection Descriptions

2.1 Introduction

The input and output signals of the DSP56F805 are organized into functional groups, as shown in **Table 2** and as illustrated in **Figure 2**. In **Table 3** through **Table 19**, each table row describes the signal or signals present on a pin.

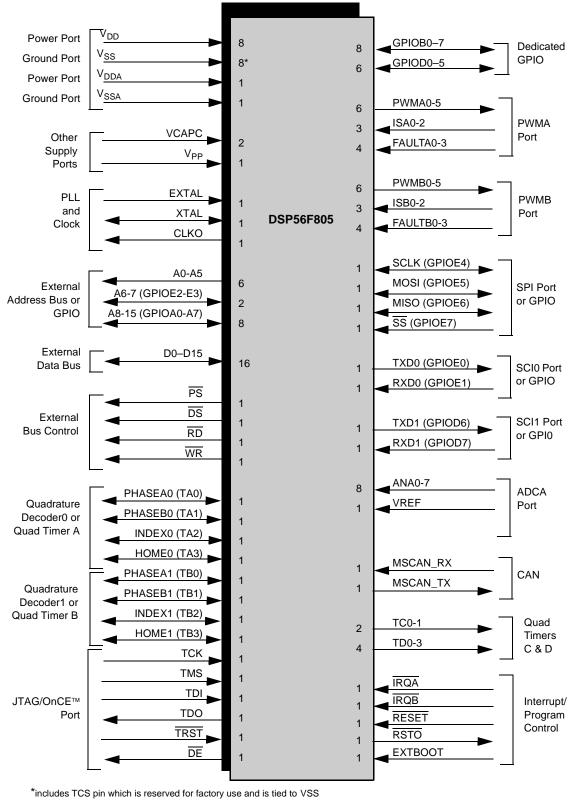

Functional Group	Number of Pins	Detailed Description
Power (V _{DD} or V _{DDA})	9	Table 3
Ground (V _{SS} or V _{SSA})	9	Table 4
Supply Capacitors and V _{PP}	3	Table 5
PLL and Clock	3	Table 2.3
Address Bus ¹	16	Table 7
Data Bus	16	Table 8
Bus Control	4	Table 9
Interrupt and Program Control	5	Table 10
Dedicated General Purpose Input/Output	14	Table 11
Pulse Width Modulator (PWM) Port	26	Table 12
Serial Peripheral Interface (SPI) Port ¹	4	Table 13
Quadrature Decoder Port ²	8	Table 14
Serial Communications Interface (SCI) Port ¹	4	Table 15
CAN Port	2	Table 16
Analog to Digital Converter (ADC) Port	9	Table 17
Quad Timer Module Ports	6	Table 18
JTAG/On-Chip Emulation (OnCE)	6	Table 19

Table 2. Functional Group Pin Allocations

1. Alternately, GPIO pins

2. Alternately, Quad Timer pins

Introduction

Figure 2. DSP56F805 Signals Identified by Functional Group¹

^{1.} Alternate pin functionality is shown in parenthesis.

2.2 Power and Ground Signals Table 3. Power Inputs

No. of Pins	Signal Name	Signal Description
8	V _{DD}	Power —These pins provide power to the internal structures of the chip, and should all be attached to V_{DD} .
1	V _{DDA}	Analog Power —This pin is a dedicated power pin for the analog portion of the chip and should be connected to a low noise 3.3V supply.

Table 4. Grounds

No. of Pins	Signal Name	Signal Description
7	V _{SS}	${\rm GND}-\!\!\!\!$ These pins provide grounding for the internal structures of the chip, and should all be attached to ${\rm V}_{\rm SS.}$
1	V _{SSA}	Analog Ground—This pin supplies an analog ground.
1	TCS	TCS —This Schmitt pin is reserved for factory use and must be tied to V_{SS} for normal use. In block diagrams, this pin is considered an additional V_{SS} .

Table 5. Supply Capacitors and VPP

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
2	VCAPC	Supply	Supply	VCAPC - Connect each pin to a 2.2μ F bypass capacitor in order to bypass the core logic voltage regulator, required for proper chip operation. For more information, please refer to Section 5.2 .
1	VPP	Input	Input	VPP - This pin should be left unconnected as an open circuit for normal functionality.

2.3 Clock and Phase Locked Loop Signals Table 6. PLL and Clock

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	EXTAL	Input	Input	External Crystal Oscillator Input —This input should be connected to an 8MHz external crystal or ceramic resonator. For more information, please refer to Section 3.5 .
1	XTAL	Input/ Output	Chip-driven	Crystal Oscillator Output—This output should be connected to an 8MHz external crystal or ceramic resonator. For more information, please refer to Section 3.5. This pin can also be connected to an external clock source. For more information, please refer to Section 3.5.3.

No. of	Signal	Signal	State During	Signal Description
Pins	Name	Type	Reset	
1	CLKO	Output	Chip-driven	Clock Output —This pin outputs a buffered clock signal. By programming the CLOKSEL[4:0] bits in the CLKO Select Register (CLKOSR), the user can select between outputting a version of the signal applied to XTAL and a version of the DSP master clock at the output of the PLL. The clock frequency on this pin can also be disabled by programming the CLOKSEL[4:0] bits in CLKOSR.

Table 6. PLL and Clock (Continued)

2.4 Address, Data, and Bus Control Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
6	A0–A5	Output	Tri-stated	Address Bus—A0–A5 specify the address for external program or data memory accesses.
2	A6-A7 GPIOE2- GPIOE3	Output Input/ Output	Tri-stated Input	 Address Bus—A6–A7 specify the address for external program or data memory accesses. Port E GPIO—These two General Purpose I/O (GPIO) pins can be individually programmed as input or output pins. After reset, the default state is Address Bus.
8	A8-A15 GPIOA0- GPIOA7	Output Input/ Output	Tri-stated Input	 Address Bus—A8–A15 specify the address for external program or data memory accesses. Port A GPIO—These eight General Purpose I/O (GPIO) pins can be individually be programmed as input or output pins. After reset, the default state is Address Bus.

Table 7. Address Bus Signals

Table 8. Data Bus Signals

No. of	Signal	Signal	State During	Signal Description
Pins	Name	Type	Reset	
16	D0–D15	Input/ Output	Tri-stated	Data Bus — D0–D15 specify the data for external program or data memory accesses. D0–D15 are tri-stated when the external bus is inactive.

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	PS	Output	Tri-stated	Program Memory Select—PS is asserted low for external program memory access.
1	DS	Output	Tri-stated	Data Memory Select—DS is asserted low for external data memory access.
1	WR	Output	Tri-stated	Write Enable — \overline{WR} is asserted during external memory write cycles. When \overline{WR} is asserted low, pins D0–D15 become outputs and the DSP puts data on the bus. When \overline{WR} is deasserted high, the external data is latched inside the external device. When \overline{WR} is asserted, it qualifies the A0–A15, \overline{PS} , and \overline{DS} pins. \overline{WR} can be connected directly to the \overline{WE} pin of a Static RAM.
1	RD	Output	Tri-stated	Read Enable —RD is asserted during external memory read cycles. When RD is asserted low, pins D0–D15 become inputs and an external device is enabled onto the DSP data bus. When RD is deasserted high, the external data is latched inside the DSP. When RD is asserted, it qualifies the A0–A15, PS, and DS pins. RD can be connected directly to the OE pin of a Static RAM or ROM. Internal pullups may be active.

Table 9. Bus Control Signals

2.5 Interrupt and Program Control Signals

Table 10. Interrupt and Program Control Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	IRQA	Input (Schmitt)	Input	External Interrupt Request A —The IRQA input is a synchronized external interrupt request indicating an external device is requesting service. It can be programmed to be level-sensitive or negative-edge- triggered.
1	IRQB	Input (Schmitt)	Input	External Interrupt Request B —The IRQB input is an external interrupt request indicating an external device is requesting service. It can be programmed to be level-sensitive or negative-edge-triggered.
1	RESET	Input (Schmitt)	Input	 Reset—This input is a direct hardware reset on the processor. When RESET is asserted low, the DSP is initialized and placed in the Reset state. A Schmitt trigger input is used for noise immunity. When the RESET pin is deasserted, the initial chip operating mode is latched from the EXTBOOT pin. The internal reset signal will be deasserted synchronous with the internal clocks, after a fixed number of internal clocks. To ensure complete hardware reset, RESET and TRST should be asserted together. The only exception occurs in a debugging environment when a hardware DSP reset is required and it is necessary not to reset the OnCE/JTAG module. In this case, assert RESET, but do not assert TRST.

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	RSTO	Output	Output	Reset Output —This output reflects the internal reset state of the chip.
1	EXTBOOT	Input (Schmitt)	Input	External Boot —This input is tied to V_{DD} to force device to boot from off-chip memory. Otherwise, it is tied to V_{SS} .

Table 10. Interrupt and Program Control Signals (Continued)

2.6 GPIO Signals

Table 11. Dedicated General Purpose Input/Output (GPIO) Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
8	GPIOB0- GPIOB7	Input or Output	Input	Port B GPIO—These eight dedicated General Purpose I/O (GPIO) pins can be individually programmed as input or output pins. After reset, the default state is GPIO input.
6	GPIOD0- GPIOD5	Input or Output	Input	Port D GPIO —These six dedicated GPIO pins can be individually programmed as an input or output pins. After reset, the default state is GPIO input.

2.7 Pulse Width Modulator (PWM) Signals Table 12. Pulse Width Modulator (PWMA and PWMB) Signals

No.of Pins	Signal Name	Signal Type	State During Reset	Signal Description
6	PWMA0-5	Output	Tri- stated	PWMA0–5 —These are six PWMA output pins.
3	ISA0-2	Input (Schmitt)	Input	ISA0–2 —These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMA.
4	FAULTA0–3	Input (Schmitt)	Input	FAULTA0–3 —These four Fault input pins are used for disabling selected PWMA outputs in cases where fault conditions originate off-chip.
6	PWMB0-5	Output	Output	PWMB0–5 —These are six PWMB output pins.
3	ISB0-2	Input (Schmitt)	Input	ISB0–2 — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMB.
4	FAULTB0–3	Input (Schmitt)	Input	FAULTB0–3 —These four Fault input pins are used for disabling selected PWMB outputs in cases where fault conditions originate off-chip.

2.8 Serial Peripheral Interface (SPI) Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	MISO	Input/ Output	Input	SPI Master In/Slave Out (MISO) —This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.
	GPIOE6	Input/ Output	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. After reset, the default state is MISO.
1	MOSI	Input/ Output	Input	SPI Master Out/Slave In (MOSI) —This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge that the slave device uses to latch the data.
	GPIOE5	Input/ Output	Input	Port E GPIO —This General Purpose I/O (GPIO) pin can be individually programmed as an input or output pin. After reset, the default state is MOSI.
1	SCLK	Input/ Output	Input	SPI Serial Clock —In master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.
	GPIOE4	Input/ Output	Input	Port E GPIO —This General Purpose I/O (GPIO) pin can be individually programmed as an input or output pin. After reset, the default state is SCLK.
1	SS	Input	Input	SPI Slave Select —In master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave.
	GPIOE7	Input/ Output	Input	Port E GPIO —This General Purpose I/O (GPIO) pin can be individually programmed as input or output pin.
				After reset, the default state is \overline{SS} .

 Table 13. Serial Peripheral Interface (SPI) Signals

2.9 Quadrature Decoder Signals Table 14. Quadrature Decoder (Quad Dec0 and Quad Dec1) Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	PHASEA0	Input	Input	Phase A—Quadrature Decoder #0 PHASEA input
	TA0	Input/Output	Input	TA0—Timer A Channel 0

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	PHASEB0	Input	Input	Phase B—Quadrature Decoder #0 PHASEB input
	TA1	Input/Output	Input	TA1—Timer A Channel 1
1	INDEX0	Input	Input	Index—Quadrature Decoder #0 INDEX input
	TA2	Input/Output	Input	TA2—Timer A Channel 2
1	HOME0	Input	Input	Home—Quadrature Decoder #0 HOME input
	TA3	Input/Output	Input	TA3—Timer A Channel 3
1	PHASEA1	Input	Input	Phase A—Quadrature Decoder #1 PHASEA input
	ТВ0	Input/Output	Input	TB0 —Timer B Channel 0
1	PHASEB1	Input	Input	Phase B—Quadrature Decoder #1 PHASEB input
	TB1	Input/Output	Input	TB1—Timer B Channel 1
1	INDEX1	Input	Input	Index—Quadrature Decoder #1 INDEX input
	TB2	Input/Output	Input	TB2—Timer B Channel 2
1	HOME1	Input	Input	Home—Quadrature Decoder #1 HOME input
	ТВ3	Input/Output	Input	TB3—Timer B Channel 3

2.10 Serial Communications Interface (SCI) Signals

Table 15. Serial Communications Interface (SCI0 and SCI1) Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	TXD0	Output	Input	Transmit Data (TXD0)—transmit data output
	GPIOE0	Input/ Output	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin. After reset, the default state is SCI output.
	DYDA			
1	RXD0	Input	Input	Receive Data (RXD0)— receive data input
	GPIOE1	Input/ Output	Input	Port E GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.
				After reset, the default state is SCI input.

Table 15. Serial Communications Interface (SCI0 and SCI1) Signals (Continued)

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	TXD1	Output	Input	Transmit Data (TXD1)—transmit data output
	GPIOD6	Input/ Output	Input	Port D GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.
				After reset, the default state is SCI output.
1	RXD1	Input	Input	Receive Data (RXD1)—receive data input
	GPIOD7	Input/ Output	Input	Port D GPIO —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.
				After reset, the default state is SCI input.

2.11 CAN Signals Table 16. CAN Module Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	MSCAN_RX	Input (Schmitt)	Input	MSCAN Receive Data —MSCAN input. This pin has an internal pull-up resistor.
1	MSCAN_TX	Output	Output	MSCAN Transmit Data —MSCAN output. CAN output is open-drain output and pull-up resistor is needed.

2.12 Analog-to-Digital Converter (ADC) Signals Table 17. Analog to Digital Converter Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
4	ANA0–3	Input	Input	ANA0-3—Analog inputs to ADC channel 1
4	ANA4-7	Input	Input	ANA4-7—Analog inputs to ADC channel 2
1	VREF	Input	Input	VREF —Analog reference voltage for ADC. Must be set to V_{DDA} -0.3V for optimal performance.

2.13 Quad Timer Module Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
2	TC0-1	Input/ Output	Input	TC0-1—Timer C Channels 0 and 1
4	TD0-3	Input/ Output	Input	TD0-3—Timer D Channels 0, 1, 2, and 3

Table 18. Quad Timer Module Signals

2.14 JTAG/OnCE

Table 19. JTAG/On-Chip Emulation (OnCE) Signals

No. of Pins	Signal Name	Signal Type	State During Reset	Signal Description
1	ТСК	Input (Schmitt)	Input, pulled low internally	Test Clock Input —This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/OnCE port. The pin is connected internally to a pull-down resistor.
1	TMS	Input (Schmitt)	Input, pulled high internally	Test Mode Select Input —This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
1	TDI	Input (Schmitt)	Input, pulled high internally	Test Data Input —This input pin provides a serial input data stream to the JTAG/OnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
1	TDO	Output	Tri-stated	Test Data Output —This tri-statable output pin provides a serial output data stream from the JTAG/OnCE port. It is driven in the Shift-IR and Shift-DR controller states, and changes on the falling edge of TCK.
1	TRST	Input (Schmitt)	Input, pulled high internally	Test Reset —As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted at power-up and whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware DSP reset is required and it is necessary not to reset the OnCE/JTAG module. In this case, assert RESET, but do not assert TRST.
1	DE	Output	Output	Debug Event —DE provides a low pulse on recognized debug events.

Part 3 Specifications

3.1 General Characteristics

The DSP56F805 is fabricated in high-density CMOS with 5-volt tolerant TTL-compatible digital inputs. The term "5-volt tolerant" refers to the capability of an I/O pin, built on a 3.3V compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of $3.3V \pm 10\%$ during normal operation without causing damage). This 5V tolerant capability therefore offers the power savings of 3.3V I/O levels while being able to receive 5V levels without being damaged.

Absolute maximum ratings given in **Table 20** are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device.

The DSP56F805 DC/AC electrical specifications are preliminary and are from design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after complete characterization and device qualifications have been completed.

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Characteristic	Symbol	Min	Мах	Unit
Supply voltage	V _{DD}	V _{SS} – 0.3	V _{SS} + 4.0	V
All other input voltages, excluding Analog inputs, EXTAL and XTAL	V _{IN}	V _{SS} – 0.3	V _{SS} + 5.5V	V
Analog inputs, ANA0-7 and VREF	V _{IN}	V _{SSA} – 0.3	V _{DDA} + 0.3	V
Analog inputs EXTAL and XTAL	V _{IN}	V _{SSA} -0.3	V _{SSA} + 3.0	V
Current drain per pin excluding V _{DD} , V _{SS} , PWM outputs, TCS, V _{PP} , V _{DDA} , V _{SSA}	I	—	10	mA

Table 20. Absolute Maximum Ratings

Characteristic	Symbol	Min	Тур	Max	Unit
Supply voltage, digital	V _{DD}	3.0	3.3	3.6	V
Supply Voltage, analog	V _{DDA}	3.0	3.3	3.6	V
ADC reference voltage	VREF	2.7	_	V _{DDA}	V
Ambient operating temperature	Τ _Α	-40	-	85	°C

Table 21. Recommended Operating Conditions

Table 22. Thermal Characteristics⁶

Characteristic	Comments	Symbol	Value	Unit	Notes	
onaracteristic	Comments	Gymbol	144-pin LQFP	onic		
Junction to ambient Natural convection		$R_{ extsf{ heta}JA}$	47.1	°C/W	2	
Junction to ambient (@1m/sec)		$R_{ extsf{ heta}JMA}$	43.8	°C/W	2	
Junction to ambient Natural convection	Four layer board (2s2p)	R _{θJMA} (2s2p)	40.8	°C/W	1,2	
Junction to ambient (@1m/sec)	Four layer board (2s2p)	R _{θJMA}	39.2	°C/W	1,2	
Junction to case		R _{θJC}	11.8	°C/W	3	
Junction to center of case		Ψ_{JT}	1	°C/W	4, 5	
I/O pin power dissipation		P _{I/O}	User Determined	W		
Power dissipation		Ρ _D	$P_D = (I_DD \times V_DD + P_I/O)$	W		
Junction to center of case		P _{DMAX}	(TJ - TA) /θJA	°C		

Notes:

- 1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p thermal test board.
- 2. Junction to ambient thermal resistance, Theta-JA ($R_{\theta JA}$) was simulated to be equivalent to the JEDEC specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes (2s2p where s is the number of signal layers and p is the number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.
- 3. Junction to case thermal resistance, Theta-JC ($R_{\theta JC}$), was simulated to be equivalent to the measured values using the cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the package is being used with a heat sink.
- 4. Thermal Characterization Parameter, Psi-JT (Ψ_{JT}), is the "resistance" from junction to reference point thermocouple on top center of case as defined in JESD51-2. Ψ_{JT} is a useful value to use to estimate junction temperature in steady state customer environments.

- 5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 6. See Section 5.1 from more details on thermal design considerations.

3.2 DC Electrical Characteristics

Table 23. DC Electrical Characteristics

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{op} = 80$ MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Input high voltage (XTAL/EXTAL)	V _{IHC}	2.25	_	2.75	V
Input low voltage (XTAL/EXTAL)	V _{ILC}	0	_	0.5	V
Input high voltage (Schmitt trigger inputs) ¹	V _{IHS}	2.2	_	5.5	V
Input low voltage (Schmitt trigger inputs) ¹	V _{ILS}	-0.3	_	0.8	V
Input high voltage (all other digital inputs)	V _{IH}	2.0	_	5.5	V
Input low voltage (all other digital inputs)	V _{IL}	-0.3	_	0.8	V
Input current high (pullup/pulldown resistors disabled, $V_{\text{IN}}{=}V_{\text{DD}})$	Ι _{ΙΗ}	-1		1	μA
Input current low (pullup/pulldown resistors disabled, $\rm V_{IN}=V_{SS})$	۱ _{۱L}	-1	_	1	μA
Input current high (with pullup resistor, $V_{IN} = V_{DD}$)	I _{IHPU}	-1	_	1	μA
Input current low (with pullup resistor, $V_{IN}=V_{SS}$)	I _{ILPU}	-210		-50	μA
Input current high (with pulldown resistor, $V_{IN}=V_{DD}$)	I _{IHPD}	20	_	180	μA
Input current low (with pulldown resistor, $V_{IN}=V_{SS}$)	I _{ILPD}	-1	_	1	μA
Nominal pullup or pulldown resistor value	R _{PU} , R _{PD}		30		KΩ
Input current high (analog inputs, $V_{IN}=V_{DDA})^2$	I _{IHA}	-15	_	15	μA
Input current low (analog inputs, $V_{IN}=V_{SSA}$) ³	I _{ILA}	-15	_	15	μA
Output High Voltage (at IOH)	V _{OH}	V _{DD} – 0.7	_	—	V
Output Low Voltage (at IOL)	V _{OL}	—	_	0.4	V
Output source current	I _{OH}	4	—	—	mA
Output sink current	I _{OL}	4	—	—	mA
PWM pin output source current ³	I _{OHP}	10	—	—	mA
PWM pin output sink current ⁴	I _{OLP}	16	—	—	mA

Table 23. DC Electrical Characteristics (Co	ontinued)
---	-----------

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{op} = 80$ MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Input capacitance	C _{IN}		8		pF
Output capacitance	C _{OUT}	_	12	_	pF
V _{DD} supply current	I _{DDT} ⁵				
Run ⁶		—	126	152	mA
Wait ⁷		—	105	129	mA
Stop		—	60	84	mA
Low Voltage Interrupt, external power supply ⁸	V _{EIO}	2.4	2.7	3.0	V
Low Voltage Interrupt, internal power supply ⁹	V _{EIC}	2.0	2.2	2.4	V
Power on Reset ¹⁰	V _{POR}	_	1.7	2.0	V

1. Schmitt Trigger inputs are: EXTBOOT, IRQA, IRQB, RESET, ISA0-2, FAULTA0-3, ISB0-2, FAULT0B-3, TCS, TCK, TRST, TMS, TDI, and MSCAN_RX

2. Analog inputs are: ANA[0:7], XTAL and EXTAL. Specification assumes ADC is not sampling.

3. PWM pin output source current measured with 50% duty cycle.

4. PWM pin output sink current measured with 50% duty cycle.

5. $I_{DDT} = I_{DD} + I_{DDA}$ (Total supply current for $V_{DD} + V_{DDA}$)

6. Run (operating) I_{DD} measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports configured as inputs; measured with all modules enabled.

7. Wait I_{DD} measured using external square wave clock source ($f_{osc} = 8MHz$) into XTAL; all inputs 0.2V from rail; no DC loads; less than 50pF on all outputs. $C_L = 20pF$ on EXTAL; all ports configured as inputs; EXTAL capacitance linearly affects wait I_{DD} ; measured with PLL enabled.

8. This low voltage interrupt monitors the V_{DDA} external power supply. V_{DDA} is generally connected to the same potential as V_{DD} via separate traces. If V_{DDA} drops below V_{EIO} , an interrupt is generated. Functionality of the device is guaranteed under transient conditions when $V_{DDA} \ge V_{EIO}$ (between the minimum specified V_{DD} and the point when the V_{EIO} interrupt is generated).

9. This low voltage interrupt monitors the internally regulated core power supply. If the output from the internal voltage is regulator drops below V_{EIC} , an interrupt is generated. Since the core logic supply is internally regulated, this interrupt will not be generated unless the external power supply drops below the minimum specified value (3.0V).

10. Power–on reset occurs whenever the internally regulated 2.5V digital supply drops below 1.5V typical. While power is ramping up, this signal remains active for as long as the internal 2.5V is below 1.5V typical no matter how long the ramp up rate is. The internally regulated voltage is typically 100 mV less than V_{DD} during ramp up until 2.5V is reached, at which time it self regulates.

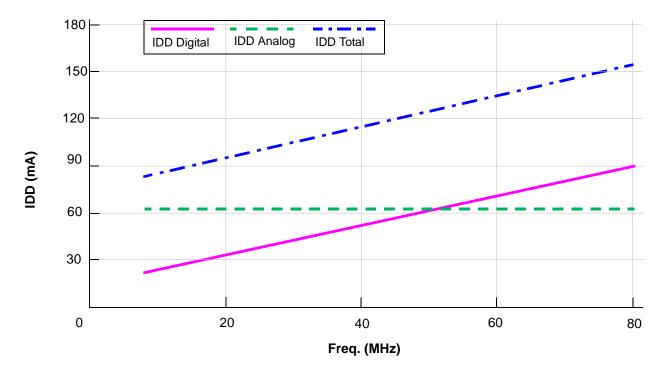
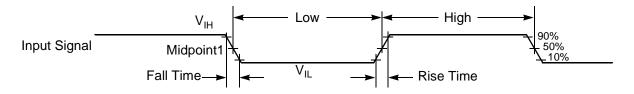



Figure 3. Maximum Run IDD vs. Frequency (see Note 6. in Table 16)

3.3 AC Electrical Characteristics

Timing waveforms in Section 3.3 are tested using the V_{IL} and V_{IH} levels specified in the DC Characteristics table. In Figure 4 the levels of V_{IH} and V_{IL} for an input signal are shown.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 4. Input Signal Measurement References

Figure 5 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state.
- Tri-stated, when a bus or signal is placed in a high impedance state.
- Data Valid state, when a signal level has reached V_{OL} or V_{OH} .
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}.

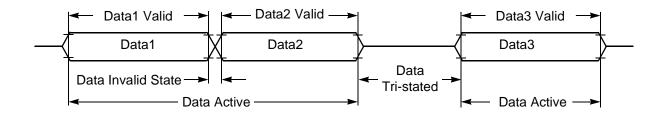


Figure 5. Signal States

3.4 Flash Memory Characteristics Table 24. Flash Memory Truth Table

Mode	XE ¹	YE ²	SE ³	OE ⁴	PROG ⁵	ERASE ⁶	MAS1 ⁷	NVSTR ⁸
Standby	L	L	L	L	L	L	L	L
Read	Н	Н	Н	Н	L	L	L	L
Word Program	Н	Н	L	L	Н	L	L	Н
Page Erase	Н	L	L	L	L	Н	L	Н
Mass Erase	Н	L	L	L	L	Н	Н	Н

1. X address enable, all rows are disabled when XE = 0

2. Y address enable, YMUX is disabled when YE = 0

3. Sense amplifier enable

4. Output enable, tri-state flash data out bus when OE = 0

- 5. Defines program cycle
- 6. Defines erase cycle
- 7. Defines mass erase cycle, erase whole block
- 8. Defines non-volatile store cycle

Table 25. IFREN Truth Table

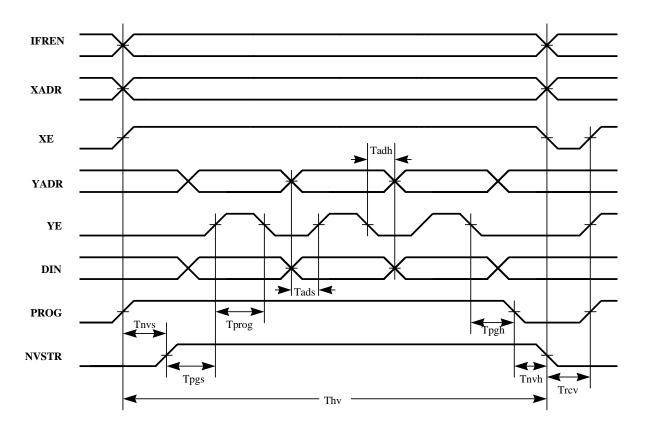
Mode	IFREN = 1	IFREN = 0		
Read	Read information block	Read main memory block		
Word program	Program information block	Program main memory block		
Page erase	Erase information block	Erase main memory block		
Mass erase	Erase both block	Erase main memory block		

Table 26. Flash Timing Parameters

Characteristic	Symbol	Min	Тур	Max	Unit	Figure
Program time	Tprog*	20	_	Ι	us	Figure 6
Erase time	Terase*	20	-	-	ms	Figure 7
Mass erase time	Tme*	100	-	-	ms	Figure 8
Endurance ¹	E _{CYC}	10,000	20,000	-	cycles	
Data Retention ¹ @ 5000 cycles	D _{RET}	10	30	-	years	

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF

The following parameters should only be used in the Manual Word Programming Mode


•		•			•	
PROG/ERASE to NVSTR set up time	Tnvs*	_	5	-	us	Figure 6, Figure 7, Figure 8
NVSTR hold time	Tnvh*	_	5	_	us	Figure 6, Figure 7
NVSTR hold time (mass erase)	Tnvh1*	-	100	_	us	Figure 8
NVSTR to program set up time	Tpgs*	-	10	_	us	Figure 6
Recovery time	Trcv*	-	1	_	us	Figure 6, Figure 7, Figure 8
Cumulative program HV period ²	Thv	-	3	_	ms	Figure 6
Program hold time ³	Tpgh	-	-	_		Figure 6
Address/data set up time ³	Tads	-	-	_		Figure 6
Address/data hold time ³	Tadh	_	-	_		Figure 6

1. One cycle is equal to an erase program and read.

2. The same row before next erase. The same address cannot be programmed twice before next erase.

3. Parameters are guaranteed by design in smart programming mode and must be one cycle or greater.

*The flash interface unit provides registers for the control of these parameters.

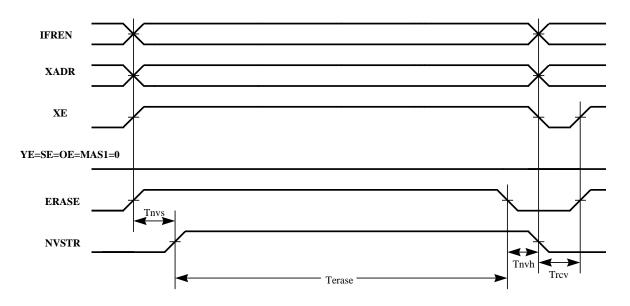


Figure 7. Flash Erase Cycle

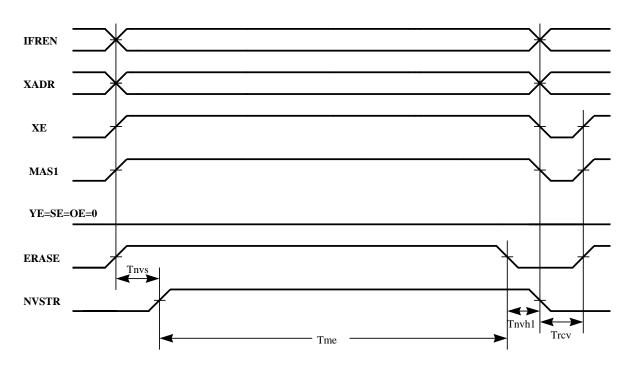


Figure 8. Flash Mass Erase Cycle

3.5 External Clock Operation

The DSP56F805 system clock can be derived from a crystal or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal must be connected between the EXTAL and XTAL pins.

3.5.1 Crystal Oscillator

The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in **Table 28**. In **Figure 9** a typical crystal oscillator circuit is shown. Follow the crystal supplier's recommendations when selecting a crystal, because crystal parameters determine the component values required to provide maximum stability and reliable start-up. The crystal and associated components should be mounted as close as possible to the EXTAL and XTAL pins to minimize output distortion and start-up stabilization time.

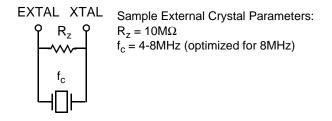


Figure 9. Connecting to a Crystal Oscillator

3.5.2 Ceramic Resonator

It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system design can tolerate the reduced signal integrity. In **Figure 10**, a typical ceramic resonator circuit is shown. Refer to supplier's recommendations when selecting a ceramic resonator and associated components. The resonator and components should be mounted as close as possible to the EXTAL and XTAL pins.

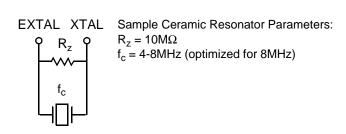


Figure 10. Connecting a Ceramic Resonator

Note: Motorola recommends only two terminal ceramic resonators vs. three terminal resonators (which contain an internal bypass capacitor to ground).

3.5.3 External Clock Source

The recommended method of connecting an external clock is given in **Figure 11**. The external clock source is connected to XTAL and the EXTAL pin is grounded.

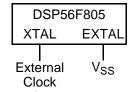
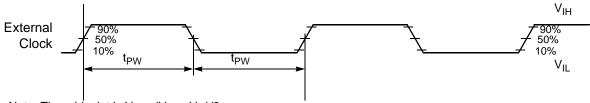


Figure 11. Connecting an External Clock Signal


Table 27. External Clock Operation Timing Requirements³

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency of operation (external clock driver) ¹	f _{osc}	0	_	80	MHz
Clock Pulse Width ² , ⁵	t _{PW}	6.25	_	_	ns

1. See Figure 11 for details on using the recommended connection of an external clock driver.

2. The high or low pulse width must be no smaller than 6.25 ns or the chip will not function.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 12. External Clock Timing

3.5.4 Phase Locked Loop Timing Table 28. PLL Timing

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C

Characteristic	Symbol	Min	Тур	Мах	Unit
External reference crystal frequency for the PLL ¹	f _{osc}	4	8	10	MHz
PLL output frequency ²	f _{out} /2	40	_	110	MHz
PLL stabilization time ³ 0° to +85°C	t _{plls}	_	1	10	ms
PLL stabilization time ³ -40° to 0°C	t _{plls}	_	100	200	ms

1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8MHz input crystal.

2. ZCLK may not exceed 80MHz. For additional information on ZCLK and $f_{out}/2$, please refer to the OCCS chapter in the User Manual. ZCLK = f_{op}

3. This is the minimum time required after the PLL setup is changed to ensure reliable operation.

3.6 External Bus Asynchronous Timing

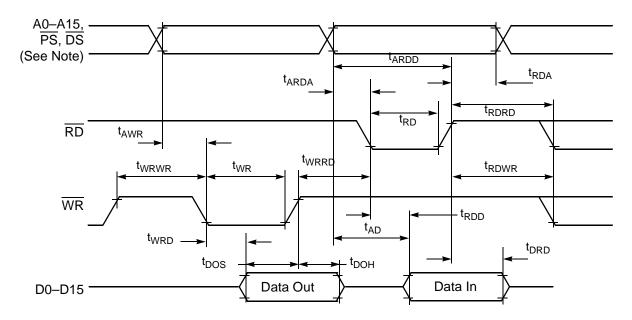
Table 29. External Bus Asynchronous Timing ^{1, 2}

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{op} = 80$ MHz

Characteristic	Symbol	Min	Мах	Unit
Address Valid to WR Asserted	t _{AWR}	6.5	_	ns
WR Width Asserted Wait states = 0 Wait states > 0	t _{WR}	7.5 (T*WS)+7.5		ns ns
WR Asserted to D0–D15 Out Valid	t _{WRD}	_	T + 4.2	ns
Data Out Hold Time from $\overline{\rm WR}$ Deasserted	t _{DOH}	4.8	—	ns
Data Out Set Up Time to \overline{WR} Deasserted Wait states = 0 Wait states > 0	t _{DOS}	2.2 (T*WS)+6.4		ns ns
RD Deasserted to Address Not Valid	t _{RDA}	0	—	ns
Address Valid to \overline{RD} Deasserted Wait states = 0 Wait states > 0	t _{ARDD}	18.7 (T*WS) + 18.7	_	ns ns
Input Data Hold to \overline{RD} Deasserted	t _{DRD}	0	—	ns
RD Assertion Width Wait states = 0 Wait states > 0	t _{RD}	19 (T*WS)+19		ns ns
Address Valid to Input Data Valid Wait states = 0 Wait states > 0	t _{AD}		1 (T*WS)+1	ns ns
Address Valid to RD Asserted	t _{ARDA}	-4.4	_	ns
RD Asserted to Input Data Valid Wait states = 0 Wait states > 0	t _{RDD}	_	2.4 (T*WS) + 2.4	ns ns
WR Deasserted to RD Asserted	t _{WRRD}	6.8	—	ns
RD Deasserted to RD Asserted	t _{RDRD}	0	—	ns
$\overline{\rm WR}$ Deasserted to $\overline{\rm WR}$ Asserted	t _{WRWR}	14.1	—	ns
RD Deasserted to WR Asserted	t _{RDWR}	12.8	—	ns

1. Timing is both wait state and frequency dependent. In the formulas listed, WS = the number of wait states and

T = Clock Period. For 80MHz operation, T = 12.5ns.


2. Parameters listed are guaranteed by design.

To calculate the required access time for an external memory for any frequency < 80Mhz, use this formula:

Top = Clock period @ desired operating frequency

WS = Number of wait states

Memory Access Time = (Top*WS) + (Top-11.5)

Note: During read-modify-write instructions and internal instructions, the address lines do not change state.

Figure 13. External Bus Asynchronous Timing

3.7 Reset, Stop, Wait, Mode Select, and Interrupt Timing Table 30. Reset, Stop, Wait, Mode Select, and Interrupt Timing^{1, 6}

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF

Characteristic	Symbol	Min	Max	Unit	See Figure
RESET Assertion to Address, Data and Control Signals High Impedance	t _{RAZ}	_	21	ns	Figure 14
Minimum $\overline{\text{RESET}}$ Assertion Duration ² OMR Bit 6 = 0 OMR Bit 6 = 1	t _{RA}	275,000T 128T		ns ns	Figure 14
RESET De-assertion to First External Address Output	t _{RDA}	33T	34T	ns	Figure 14
Edge-sensitive Interrupt Request Width	t _{IRW}	1.5T	—	ns	Figure 15
IRQA, IRQB Assertion to External Data Memory Access Out Valid, caused by first instruction execution in the interrupt service routine	t _{IDM}	_	15T	ns	Figure 16
IRQA, IRQB Assertion to General Purpose Output Valid, caused by first instruction execution in the interrupt service routine	t _{IG}	_	16T	ns	Figure 16
IRQA Low to First Valid Interrupt Vector Address Out recovery from Wait State ³	t _{IRI}	—	13T	ns	Figure 17

Table 30. Reset, Stop, Wait, Mode Select, and Interrupt Timing^{1, 6} (Continued)

Characteristic	Symbol	Min	Max	Unit	See Figure
IRQA Width Assertion to Recover from Stop State ⁴	t _{IW}		2T	ns	Figure 18
Delay from IRQA Assertion to Fetch of first instruction (exiting Stop) OMR Bit 6 = 0 OMR Bit 6 = 1	t _{IF}		275,000T 12T	ns ns	Figure 18
Duration for Level Sensitive \overline{IRQA} Assertion to Cause the Fetch of First \overline{IRQA} Interrupt Instruction (exiting Stop) OMR Bit 6 = 0 OMR Bit 6 = 1	t _{IRQ}	—	275,000T 12T	ns ns	Figure 19
Delay from Level Sensitive IRQA Assertion to First Interrupt Vector Address Out Valid (exiting Stop) OMR Bit 6 = 0 OMR Bit 6 = 1	t _{ll}		275,000T 12T	ns ns	Figure 19
RSTO pulse width ⁵ normal operation internal reset mode	t _{RSTO}	63ET 2,097,151ET		ns ns	Figure 20

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF

1. In the formulas, T = clock cycle. For an operating frequency of 80MHz, T = 12.5ns.

Circuit stabilization delay is required during reset when using an external clock or crystal oscillator in two cases:
 After power-on reset

• When recovering from Stop state

3. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is not the minimum required so that the IRQA interrupt is accepted.

4. The interrupt instruction fetch is visible on the pins only in Mode 3.

5. ET = External Clock period, For an external crystal frequency of 8MHz, ET=125 ns.

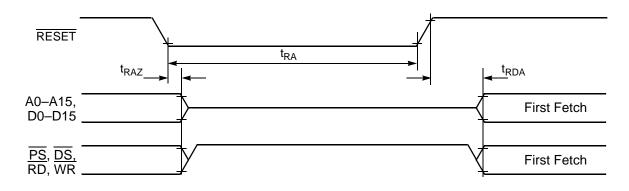


Figure 14. Asynchronous Reset Timing

Figure 15. External Interrupt Timing (Negative-Edge-Sensitive)

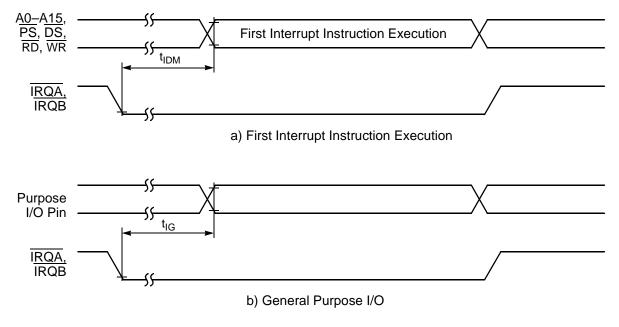


Figure 16. External Level-Sensitive Interrupt Timing

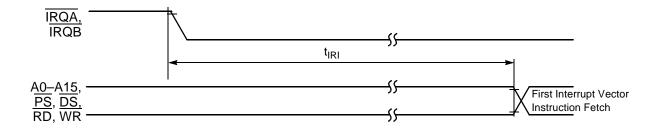


Figure 17. Interrupt from Wait State Timing

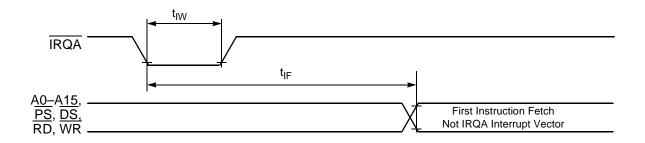
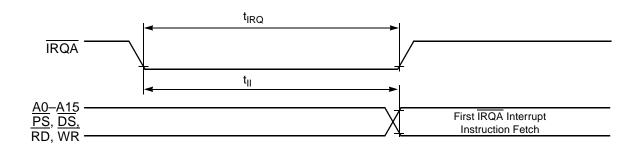
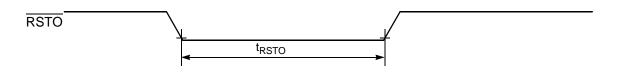
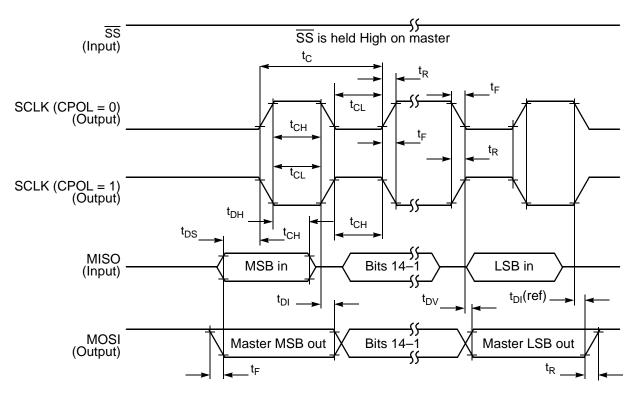



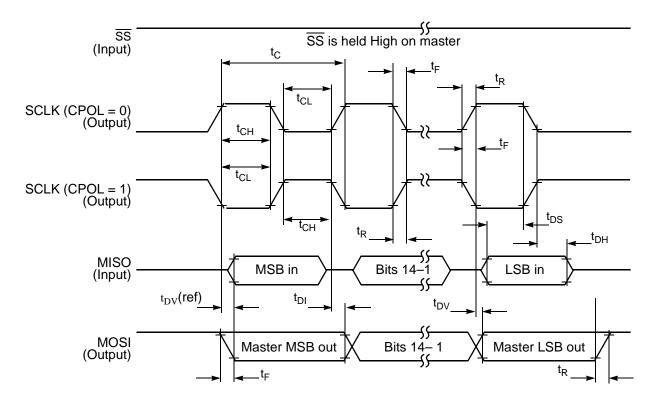
Figure 18. Recovery from Stop State Using Asynchronous Interrupt Timing

Figure 19. Recovery from Stop State Using IRQA Interrupt Service

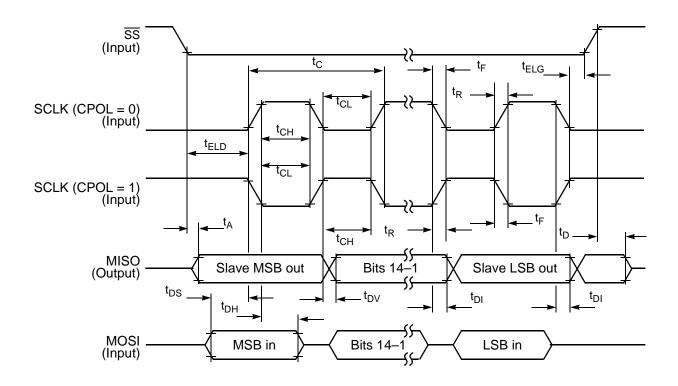


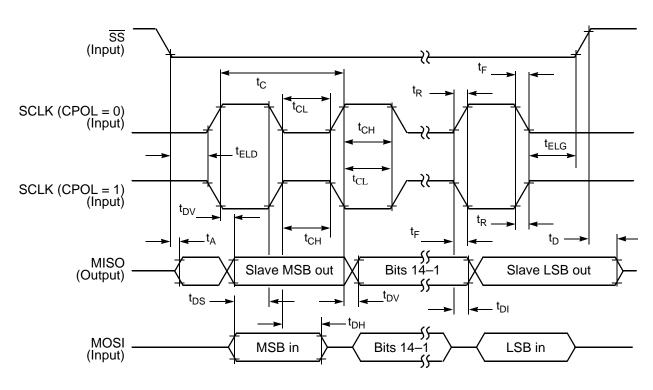

Figure 20. Reset Output Timing

3.8 Serial Peripheral Interface (SPI) Timing


Table 31. SPI Timing¹

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{OP} = 80$ MHz


Characteristic	Symbol	Min	Мах	Unit	See Figure
Cycle time Master Slave	t _C	50 25		ns ns	Figures 21, 22, 23, 24
Enable lead time Master Slave	t _{ELD}	 25		ns ns	Figure 24
Enable lag time Master Slave	t _{ELG}	 100		ns ns	Figure 24
Clock (SCLK) high time Master Slave	^t сн	17.6 12.5		ns ns	Figures 21, 22, 23, 24
Clock (SCLK) low time Master Slave	t _{CL}	24.1 25	_	ns ns	Figure 24
Data setup time required for inputs Master Slave	t _{DS}	20 0		ns ns	Figures 21, 22, 23, 24
Data hold time required for inputs Master Slave	t _{DH}	0 2		ns ns	Figures 21, 22, 23, 24
Access time (time to data active from high- impedance state) Slave	t _A	4.8	15	ns	Figure 24
Disable time (hold time to high-impedance state) Slave	t _D	3.7	15.2	ns	Figure 24
Data Valid for outputs Master Slave (after enable edge)	t _{DV}	_	4.5 20.4	ns ns	Figures 21, 22, 23, 24
Data invalid Master Slave	t _{DI}	0 0		ns ns	Figures 21, 22, 23, 24
Rise time Master Slave	t _R		11.5 10.0	ns ns	Figures 21, 22, 23, 24
Fall time Master Slave	t _F		9.7 9.0	ns ns	Figures 21, 22, 23, 24



3.9 Quad Timer Timing

Table 32. Timer Timing^{1, 2}

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{OP} = 80$ MHz

Characteristic	Symbol	Min	Мах	Unit
Timer input period	P _{IN}	4T+6		ns
Timer input high/low period	P _{INHL}	2T+3	—	ns
Timer output period	P _{OUT}	2T	—	ns
Timer output high/low period	POUTHL	1T	_	ns

1. In the formulas listed, T = clock cycle. For 80MHz operation, T = 12.5 ns.

2. Parameters listed are guaranteed by design.

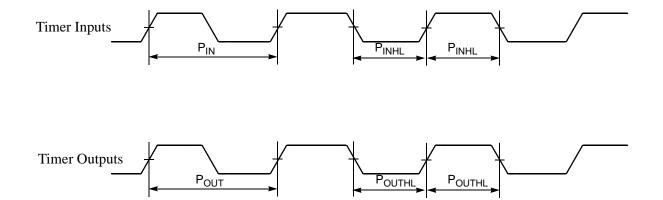


Figure 25. Timer Timing

3.10 Quadrature Decoder Timing

Table 33. Quadrature Decoder Timing^{1, 2}

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{OP} = 80$ MHz

Characteristic	Symbol	Min	Мах	Unit
Quadrature input period	P _{IN}	8T+12	_	ns
Quadrature input high/low period	P _{HL}	4T+6	_	ns
Quadrature phase period	P _{PH}	2T+3	—	ns

1. In the formulas listed, T = clock cycle. For 80MHz operation, T = 12.5 ns. $V_{SS} = 0$ V, $V_{DD} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to +85°C, $C_L \leq 50$ pF.

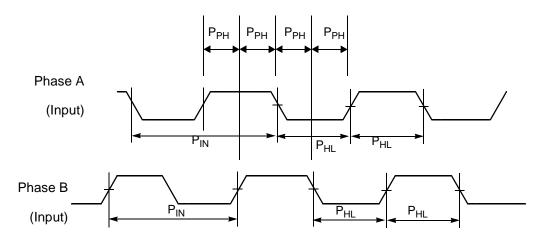


Figure 26. Quadrature Decoder Timing

3.11 Serial Communication Interface (SCI) Timing Table 34. SCI Timing⁴

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{OP} = 80$ MHz

Characteristic	Symbol	Min	Max	Unit
Baud Rate ¹	BR	_	(f _{MAX} *2.5)/(80)	Mbps
RXD ² Pulse Width	RXD _{PW}	0.965/BR	1.04/BR	ns
TXD ³ Pulse Width	TXD _{PW}	0.965/BR	1.04/BR	ns

1. f_{MAX} is the frequency of operation of the system clock in MHz.

2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.

3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.

Figure 27. RXD Pulse Width

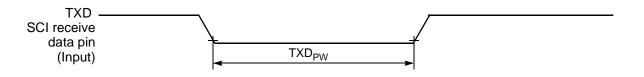
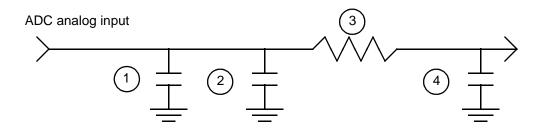


Figure 28. TXD Pulse Width

3.12 Analog-to-Digital Converter (ADC) Characteristics Table 35. ADC Characteristics


Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $V_{REF} = V_{DD}-0.3$ V, ADCDIV = 4, 9, or 14, (for optimal performance), ADC clock = 4MHz, 3.0-3.6 V, $T_A = -40^{\circ}$ to +85°C, $C_L \le 50$ pF, $f_{OP} = 80$ MHz

Characteristic	Symbol	Min	Тур	Max	Unit
ADC input voltages	V _{ADCIN}	01	_	V _{REF} ²	V
Resolution	R _{ES}	12	_	12	Bits
Integral Non-Linearity ³	INL	—	+/-2.5	+/-4	LSB ⁴
Differential Non-Linearity	DNL	—	+/- 0.9	+/-1	LSB ⁴
Monotonicity		•	GUARANTE	ED	•
ADC internal clock ⁵	f _{ADIC}	0.5		5	MHz
Conversion range	R _{AD}	V _{SSA}	_	V _{DDA}	V
Conversion time	t _{ADC}	—	6	—	t _{AIC} cycles ⁶
Sample time	t _{ADS}	_	1	—	t _{AIC} cycles ⁶
Input capacitance	C _{ADI}	—	5	_	pF ⁶
Gain Error (transfer gain) ⁵	E _{GAIN}	.95	1.00	1.10	—
Offset Voltage ⁵	V _{OFFSET}	-80	-15	+20	mV
Total Harmonic Distortion ⁵	THD	60	64	—	dB
Signal-to-Noise plus Distortion ⁵	SINAD	55	60	—	dB
Effective Number Of Bits ⁵	ENOB	9	10	_	bit
Spurious Free Dynamic Range ⁵	SFDR	65	70	_	dB
Bandwidth	BW	—	100	—	KHz
ADC Quiescent Current (both ADCs)	I _{ADC}	—	50	—	mA
V _{REF} Quiescent Current (both ADCs)	I _{VREF}	_	12	16.5	mA

1. For optimum ADC performance, keep the minimum V_{ADCIN} value ≥ 25 mV. Inputs less than 25mV may convert to a digital output code of 0.

2. V_{REF} must be equal to or less than V_{DDA} and must be greater than 2.7V. For optimal ADC performance, set V_{REF} to V_{DDA} -0.3V.

- 3. Measured in 10-90% range.
- 4. LSB = Least Significant Bit.
- 5. Guaranteed by characterization.
- 6. $t_{AIC} = 1/f_{ADIC}$

Figure 29. Equivalent Analog Input Circuit

- 1. Parasitic capacitance due to package, pin to pin, and pin to package base coupling. (1.8pf)
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing. (2.04pf)
- 3. Equivalent resistance for the ESD isolation resistor and the channel select mux. (500 ohms)
- 4. Sampling capacitor at the sample and hold circuit. (1pf)

3.13 Controller Area Network (CAN) Timing Table 36. CAN Timing²

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, MSCAN Clock = 30MHz

Characteristic	Symbol	Min	Мах	Unit
Baud Rate	BR _{CAN}		1	Mbps
Bus Wakeup detection ¹	T _{WAKEUP}	5	_	us

1. If Wakeup glitch filter is enabled during the design initialization and also CAN is put into Sleep mode then, any bus event (on MSCAN_RX pin) whose duration is less than 5 microseconds is filtered away. However, a valid CAN bus wakeup detection takes place for a wakeup pulse equal to or greater than 5 microseconds. The number 5 microseconds originates from the fact that the CAN wakeup message consists of 5 dominant bits at the highest possible baud rate of 1Mbps.

2. Parameters listed are guaranteed by design.

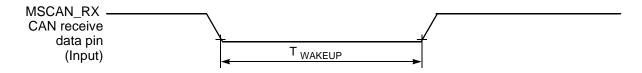


Figure 30. Bus Wakeup Detection

3.14 JTAG Timing

Table 37. JTAG Timing^{1, 3}

Operating Conditions: $V_{SS} = V_{SSA} = 0$ V, $V_{DD} = V_{DDA} = 3.0-3.6$ V, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, $C_L \le 50$ pF, $f_{OP} = 80$ MHz

Characteristic	Symbol	Min	Мах	Unit
TCK frequency of operation ²	f _{OP}	DC	10	MHz
TCK cycle time	t _{CY}	100	—	ns
TCK clock pulse width	t _{PW}	50	—	ns
TMS, TDI data setup time	t _{DS}	0.4	—	ns
TMS, TDI data hold time	t _{DH}	1.2	—	ns
TCK low to TDO data valid	t _{DV}	—	26.6	ns
TCK low to TDO tri-state	t _{TS}	—	23.5	ns
TRST assertion time	t _{TRST}	50	—	ns
DE assertion time	t _{DE}	4T	—	ns

1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz operation, T = 12.5 ns.

2. TCK frequency of operation must be less than 1/8 the processor rate.

3. Parameters listed are guaranteed by design.

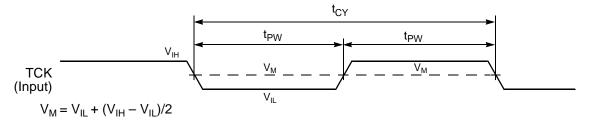


Figure 31. Test Clock Input Timing Diagram

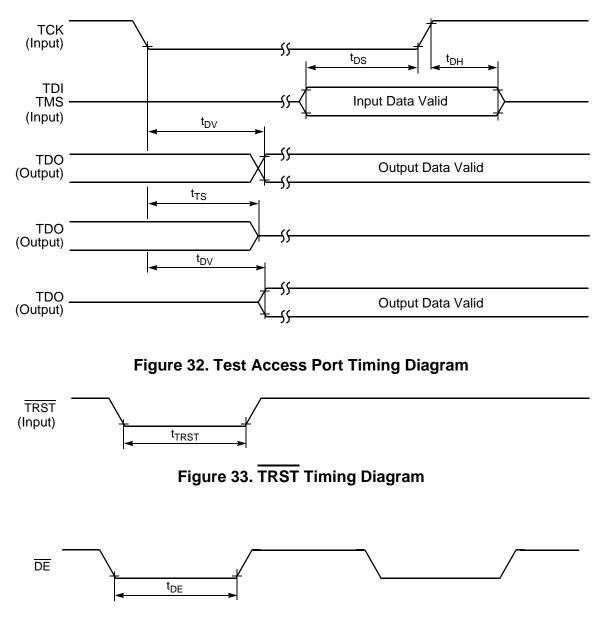
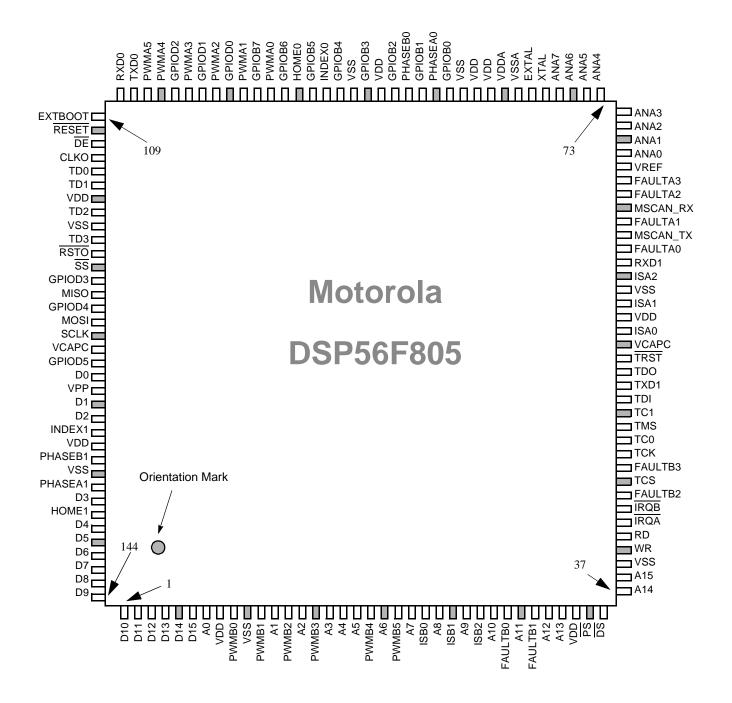


Figure 34. OnCE—Debug Event

Part 4 Packaging

4.1 Package and Pin-Out Information DSP56F805

This section contains package and pin-out information for the 144-pin LQFP configuration of the DSP56F805.



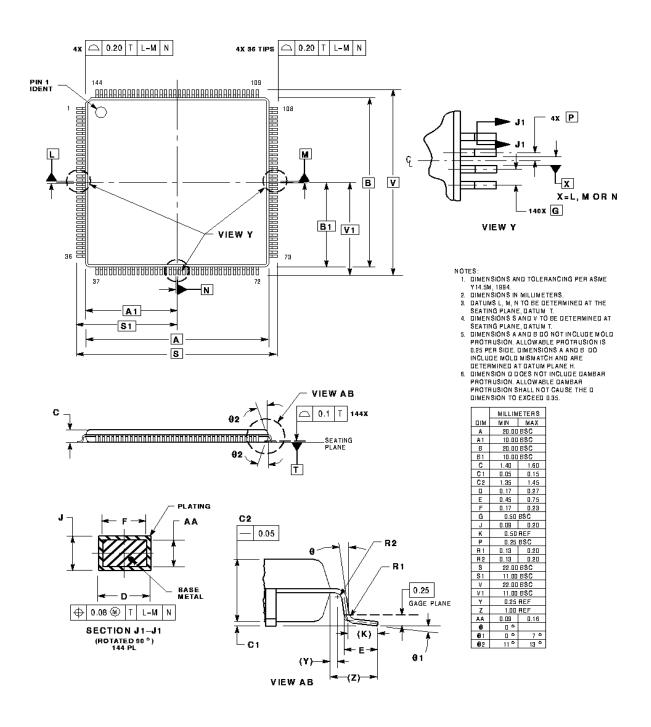

Figure 35. Top View, DSP56F805 144-pin LQFP Package

 Table 38. DSP56F805 Pin Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	D10	37	A14	73	ANA4	109	EXTBOOT
2	D11	38	A15	74	ANA5	110	RESET
3	D12	39	V _{SS}	75	ANA6	111	DE
4	D13	40	WR	76	ANA7	112	CLKO
5	D14	41	RD	77	XTAL	113	TD0
6	D15	42	IRQA	78	EXTAL	114	TD1
7	A0	43	IRQB	79	V _{SSA}	115	V _{DD}
8	V _{DD}	44	FAULTB2	80	V _{DDA}	116	TD2
9	PWMB0	45	TCS	81	V _{DD}	117	V _{SS}
10	V _{SS}	46	FAULTB3	82	V _{DD}	118	TD3
11	PWMB1	47	ТСК	83	V _{SS}	119	RSTO
12	A1	48	TC0	84	GPIOB0	120	SS
13	PWMB2	49	TMS	85	PHASEA0	121	GPIOD3
14	A2	50	TC1	86	GPIOB1	122	MISO
15	PWMB3	51	TDI	87	PHASEB0	123	GPIOD4
16	A3	52	TXD1	88	GPIOB2	124	MOSI
17	A4	53	TDO	89	V _{DD}	125	SCLK
18	A5	54	TRST	90	GPIOB3	126	VCAPC
19	PWMB4	55	VCAPC	91	V _{SS}	127	GPIOD5
20	A6	56	ISA0	92	GPIOB4	128	D0
21	PWMB5	57	V _{DD}	93	INDEX0	129	VPP
22	A7	58	ISA1	94	GPIOB5	130	D1
23	ISB0	59	V _{SS}	95	HOME0	131	D2
24	A8	60	ISA2	96	GPIOB6	132	INDEX1
25	ISB1	61	RXD1	97	PWMA0	133	V _{DD}
26	A9	62	FAULTA0	98	GPIOB7	134	PHASEB1
27	ISB2	63	MSCAN_TX	99	PWMA1	135	V _{SS}

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
28	A10	64	FAULTA1	100	GPIOD0	136	PHASEA1
29	FAULTB0	65	MSCAN_RX	101	PWMA2	137	D3
30	A11	66	FAULTA2	102	GPIOD1	138	HOME1
31	FAULTB1	67	FAULTA3	103	PWMA3	139	D4
32	A12	68	VREF	104	GPIOD2	140	D5
33	A13	69	ANA0	105	PWMA4	141	D6
34	V _{DD}	70	ANA1	106	PWMA5	142	D7
35	PS	71	ANA2	107	TXD0	143	D8
36	DS	72	ANA3	108	RXD0	144	D9

Table 38. DSP56F805 Pin Identification by Pin Number (Continued)

CASE 918-03 ISSUE C

Figure 36. 144-pin LQFP Mechanical Information

Part 5 Design Considerations

5.1 Thermal Design Considerations

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

Equation 1: $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

 T_A = ambient temperature °C

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance °C/W

 P_D = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

Equation 2:
$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Where:

$$\begin{split} R_{\theta JA} &= \text{package junction-to-ambient thermal resistance }^\circ\text{C/W} \\ R_{\theta JC} &= \text{package junction-to-case thermal resistance }^\circ\text{C/W} \\ R_{\theta CA} &= \text{package case-to-ambient thermal resistance }^\circ\text{C/W} \end{split}$$

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimations obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

Definitions:

A complicating factor is the existence of three common definitions for determining the junction-to-case thermal resistance in plastic packages:

- Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation across the surface.
- Measure the thermal resistance from the junction to where the leads are attached to the case. This definition is approximately equal to a junction to board thermal resistance.

• Use the value obtained by the equation $(T_J - T_T)/P_D$ where T_T is the temperature of the package case determined by a thermocouple.

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

5.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct DSP operation:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the DSP, and from the board ground to each V_{SS} pin.
- The minimum bypass requirement is to place 0.1 μ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA}. The VCAP capacitors must be low ESR capacitors, such as ceramic or tantalum.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and V_{SS} pins are less than 0.5 inch per capacitor lead.
- Bypass the V_{DD} and V_{SS} layers of the PCB with approximately 100 μ F, preferably with a highgrade capacitor such as a tantalum capacitor.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal.

- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.
- Take special care to minimize noise levels on the VREF, V_{DDA} and V_{SSA} pins.
- Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means to assert TRST independently of RESET. TRST must be asserted at power up for proper operation. Designs that do not require debugging functionality, such as consumer products, TRST should be tied low.
- TRST must be externally asserted even when the user relies on the internal power on reset for functional test purposes.
- Because the Flash memory is programmed through the JTAG/OnCE port, designers should provide an interface to this port to allow in-circuit Flash programming.

Part 6 Ordering Information

Table 39 lists the pertinent information needed to place an order. Consult a Motorola Semiconductor sales office or authorized distributor to determine availability and to order parts.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Order Number
DSP56F805	3.0–3.6 V	Low Profile Plastic Quad Flat Pack (LQFP)	144	80	DSP56F805FV80

Table 39. DSP56F805 Ordering Information

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for sugical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334 Technical Information Center: 1–800–521–6274

HOME PAGE: http://www.motorola.com/semiconductors/

