TOSHIBA TLP763J

TENTATIVE

TOSHIBA PHOTOCOUPLER GaAs IRED + PHOTO-TRIAC

TLP763J

OFFICE MACHINE

HOUSEHOLD USE EQUIPMENT

TRIAC DRIVER

SOLID STATE RELAY

The TOSHIBA TLP763J consists of a GaAs infrared LED optically coupled to a zero voltage crossing turn-on photo-triac in a 6 lead plastic DIP.

• Peak Off-State Voltage : 600V (MIN.)

• Trigger LED Current : 10mA (MAX.)

• On-State Current : 100mA (MAX.)

• Isolation Voltage : 4000Vrms (MIN.)

• UL Recognized : UL1577, File No. E67349

• BSI Approved : BS EN60065 : 1994,

Certificate No. 7831 BS EN60065: 1992, Certificate No. 7832

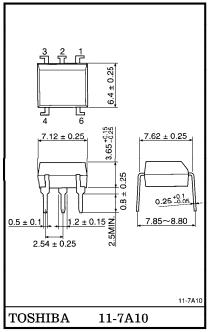
• SEMKO Approved : SS-EN60065 (EN60065, 1993)

SS-EN60950 (EN60950, 1992) SS-EN60335 (EN60335, 1988)

Certificate No. 9522145

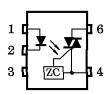
• Option (D4) type

VDE Approved : DIN VDE 0884, 06. 92


Certificate No. 91803

Maximum Operating Insulation Voltage: 890VpK Highest Permissible Over Voltage: 6000VpK

(Note) When a VDE0884 approved type is needed, please designate the "Option (D4)"


			7.62mm pich TLP763J type	10.16mm pich TLP763JF type
•	Creepage Distance	:	7.0mm (Min.)	8.0mm (Min.)
	Clearance	:	7.0mm (Min.)	8.0mm (Min.)
	Internal Creepage Path	:	4.0mm (Min.)	4.0mm (Min.)
	Insulation Thickness	:	0.5mm (Min.)	0.5mm (Min.)

Unit in mm

Weight: 0.42g

PIN CONFIGURATION (TOP VIEW)

1 : ANODE 2 : CATHODE

3:NC

4 : TRIAC 1 6 : TRIAC 2

961001EBC2

[●] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC			SYMBOL	RATING	UNIT	
	Forward Current	$I_{\mathbf{F}}$	50	mA		
lα	Forward Current Derating (Ta≥	∆I _F /°C	-0.7	mA/°C		
ΕI	Peak Forward Current (100 µs pu	I_{FP}	1	A		
Г	Reverse Voltage	$V_{\mathbf{R}}$	5	V		
	Junction Temperature	Тј	125	°C		
	Off-State Output Terminal Volta	$V_{ m DRM}$	600	V		
	On-State RMS Current	Ta = 25°C	Im (Darg)	100	mA	
OR		Ta=70°C	IT (RMS)	50		
$_{ m CT}$	On-State Current Derating (Ta≥	$\Delta I_{\mathrm{T}}/^{\circ}\mathrm{C}$	-1.1	mA/°C		
DETE	Peak On-State Current (100 µs p	ITP	2	A		
DE	Peak Nonrepetitive Surge Currer (PW=10ms, DC=10%)	ITSM	1.2	A		
	Junction Temperature	Tj	115	°C		
Storage Temperature Range			$T_{ m stg}$	-55~125	°C	
Operating Temperature Range			$T_{ m opr}$	-40~100	°C	
Lead Soldering Temperature (10s)			T_{sol}	sol 260		
Isol	Isolation Voltage (AC, 1 min., R.H. ≤ 60%)			BV _S 4000		

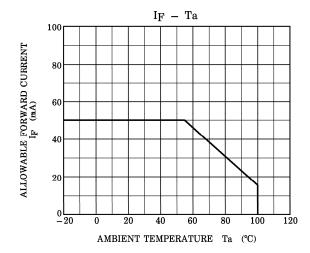
RECOMMENDED OPERATING CONDITIONS

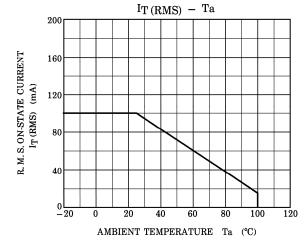
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{AC}	_		240	v_{ac}
Forward Current	$\mathbf{I_F}$	15	20	25	mA
Peak On-State Current	I_{TP}	_	_	1	A
Operating Temperature	$T_{ m opr}$	-25	_	85	°C

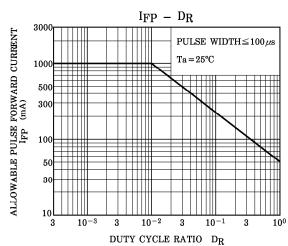
Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

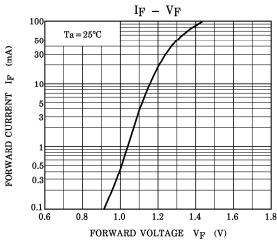
The products described in this document are subject to foreign exchange and foreign trade control laws.

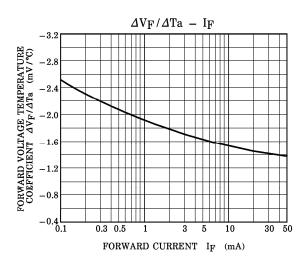
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.


The information contained herein is subject to change without notice.


INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)


	CHARACTERISTIC SYMB		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$V_{\mathbf{F}}$	$I_{ m F} = 10 { m mA}$	1.0	1.15	1.3	V
LED	Reverse Current	$I_{ m R}$	$V_{\mathbf{R}} = 5V$	_		10	$\mu \mathbf{A}$
	Capacitance	$\mathrm{C_{T}}$	V=0, $f=1MHz$		30	_	рF
	Peak Off-State Current	$I_{ m DRM}$	$V_{\mathrm{DRM}} = 600 \mathrm{V}$	_	10	1000	nA
ده	Peak On-State Voltage	$V_{ extbf{TM}}$	$I_{TM} = 100 mA$	_	1.7	3.0	V
TOF	Holding Current	$I_{\mathbf{H}}$		_	0.6	_	mA
DETECTOR	Critical Rate of Rise of Off-State Voltage	dv/dt	Vin=240V, Ta=85°C	_	500	_	V/μs
	Critical Rate of Rise of Commutating Voltage	dv / dt (C)	$I_T = 15 \text{mA}$ Vin = 60 Vrms	_	0.2	_	V/μs


COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Trigger LED Current	$I_{ extbf{FT}}$	$V_{T}=6V$		_	10	mA	
Inhibit Voltage	$ m v_{IH}$	I _F =Rated I _F T	_		50	V	
Leakage in Inhibited State	I _{IH}	I_F = Rated I_{FT} V_T = Rated V_{DRM}		200	600	μ A	
Capacitance (Input to Output)	c_{S}	$V_S=0$, f=1MHz	_	0.8		рF	
Isolation Resistance	$R_{\mathbf{S}}$	$V_S = 500V$	1×10^{12}	10^{14}	1	Ω	
	$BV_{\mathbb{S}}$	AC, 1 minute	4000	_	_	Vrms	
Isolation Voltage		AC, 1 second, in oil	_	10000	_	vrms	
		DC, 1 minute, in oil	_	10000	_	$v_{ m dc}$	

