TOSHIBA TLP828

TOSHIBA PHOTOINTERRUPTER INFRARED LED + PHOTOTRANSISTOR

TLP828

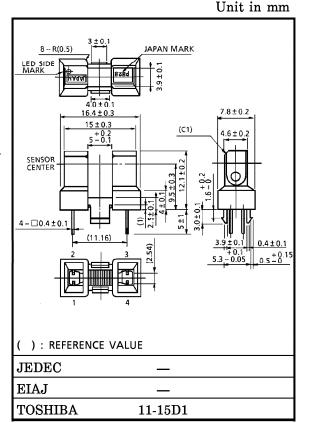
MOTOR ROTATION SENSOR FOR OIL-FIRED HEATER LOUVER LOCATION SENSOR FOR AIR CONDITIONER PAPER PASSING DETECTION FOR THE TICKET VENDING MACHINE

PAPER DETECTION FOR THE PRINTER AND FACSIMILE

TLP828 is a photointerrupter incorporating GaAs infrared LED and fast-response Si phototransistor in a dust-proof package.

- Snap-in monting type (1.6mm thickness of PCB)
- The package is only dust-proof for the sensor because there are no slits.

• High current transfer ratio : IC/IF=7.5% (min)

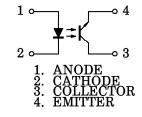

Gap : 5mm
 Resolution : 1.5mm

• Material of the package : Polycarbonate

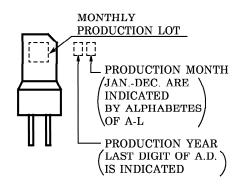
(UL94V-2)

Detector side is of visible light cut type.

• Fast response speed : t_r , $t_f = 15 \mu s$ (typ.)



Weight: 0.7g (typ.)


PIN CONNECTION

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
LED	Forward Current	$I_{\mathbf{F}}$	50	mA	
	Forward Current Derating (Ta>25°C)	⊿I _F /°C	-0.33	mA/°C	
	Reverse Voltage	v_{R}	5	V	
R	Collector-Emitter Voltage	V _{CEO} 35		V	
T 0	Emitter-Collector Voltage	V _{ECO} 5		V	
ပ	Collector Power Dissipation	PC	75	mW	
ETE	Collector Power Dissipation Derating (Ta>25°C)	△P _C /°C	-1	mW/°C	
	Collector Current	$I_{\mathbf{C}}$	50	mA	
Operating Temperature Range		$T_{ m opr}$	-25~85	$^{\circ}\mathrm{C}$	
St	orage Temperature Range	$ m T_{stg}$	-40~100	$^{\circ}\mathrm{C}$	
So	oldering Temperature (5s)	$T_{ m sol}$	260	°C	

PRODUCT INDICATION

961001EBC2

[●] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{CC}	_	5	24	V
Forward Current	${ m I_F}$	_	_	25	mA

OPTO-ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
	Forward Voltage		$v_{\mathbf{F}}$	$I_{\mathrm{F}} = 10 \mathrm{mA}$	1.00	1.15	1.30	V
LED	Reverse Current		$I_{\mathbf{R}}$	$V_R = 5V$	_	_	10	μ A
LED	Peak Emission Wavelength		$\lambda_{\mathbf{P}}$	$I_{ m F}\!=\!20{ m mA}$	_	940	_	nm
	Dark Current		$I_{\mathbf{D}}$	$V_{CE} = 24V, I_{F} = 0$	_	_	0.1	μ A
DETECTOR	Peak Sensitivity Wavelength		$\lambda_{\mathbf{P}}$	_	_	870	_	nm
	Current Transfer Ratio		I _C /I _F	$V_{CE} = 5V, I_{F} = 10mA$	7.5	_	_	%
COUPLED	Collector-Emitter Saturation Voltage		V _{CE} (sat)	$I_{ m F}\!=\!20{ m mA}, I_{ m C}\!=\!0.75{ m mA}$	_	0.15	0.35	V
	Leakage Current	I _{LEAK}	$V_{CE} = 5V, I_F = 50mA$ (Note 1)	_	_	10	μ A	
	Switching Rise Time	$t_{\mathbf{r}}$	$V_{CC}=5V$, $I_{C}=1mA$		15	50	//8	
	Times	Fall Time	t_{f}	$R_L=1k\Omega$	_	15	50	μs

Note 1: When light is blocked for the top 5.1mm of the device using a shutter.

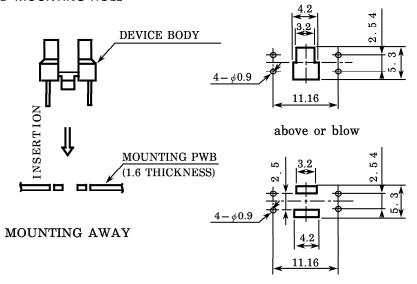
Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

PRECAUTION

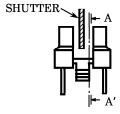

- Be careful that no solder is attached to the case body.
- If the chemical are used for cleaning, the soldered surface only shall be cleaned with chemicals avoiding the whole cleaning of the package.
- Shall be mounted on an unwarped surface.
- Do not solder the lead or printed circuit board to the connector. Connect the connector to the recommended connector correctly.
- A visible light cut-off type photo transistor which blocks light with frequencies of 700nm or above is used. However, the device cannot block ambient light with a wavelength of 700nm or more or sunlight. Install avoiding the disturbance light.
- The container is made of polycarbonate. Polycarbonate is usually stable with acid, alcohol, and aliphatic hydrocarbons however, with pertochemicals (such as benzene, toluene, and acetone), alkali, aromatic hydrocarbons, or chloric hydrocarbons, polycarbonate becomes cracked, swollen, or melted. Please take care when chosing a packaging material by referencing the table below.

<Chemicals to avoid with polycarbonate>

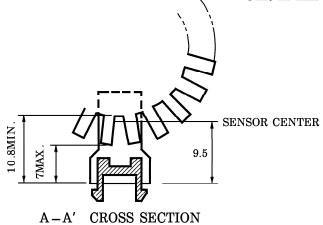
- CIICII	Chemicals to avoid with polycarbonate >				
	PHENOMENON	CHEMICALS			
Α	Little deterioration but staining	nitric acid (low concentration), hydrogen peroxide, chlorine			
В	Cracked, crazed, or swollen	 acetic acid (70% or more) gasoline methyl ethyl ketone, ehtyl acetate, butyl acetate ethyl methacrylate, ethyl ether, MEK acetone, m-amino alcohol, carbon tetrachloride carbon disulfide, trichloroethylene, cresol thinners, oil of turpentine triethanolamine, TCP, TBP 			
С	Melted { }: Used as solvent.	 concentrated sulfuric acid benzene styrene, acrylonitrile, vinyl acetate ethylenediamine, diethylenediamine [chloroform, methyl chloride, tetrachloromethane, dioxane,] 1, 2-dichloroethane 			
D	Decomposed	ammonia water other alkali			

RECOMMENDED MOUNTING HOLE

Unit in mm


RECOMMENDED MOUNTING HOLE

POSITIONING OF SHUTTER AND DEVICE


To operate correctly, make sure that the shutter and the device are positioned as shown in the figure below.

The shit pitch of the shutter must be set wider than 1.5mm

Determine the width taking the switching time into consideration.

Unit in mm

