TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T C 7 M E T 3 7 3 A F K

Octal D-Type Latch with 3-State Output

The TC7MET373AFK is an advanced high speed CMOS octal latch with 3-state output fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

This 8-bit D-type latch is controlled by a latch enable input (LE) and a output enable input (OE).

When the OE input is high, the eight outputs are in a high impedance state.

The input voltage are compatible with TTL output voltage.

This device may be used as a level converter for interfacing 3.3 V to 5 V system.

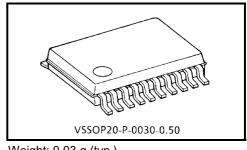
Input protection and output circuit ensure that 0 to 5.5 V can be applied to the input and output (*) pins without regard to the supply voltage. These structure prevents device destruction due to mismatched supply and input/output voltages such as battery back up, hot board insertion, etc.

*: output in off-state

Features

- High speed: $t_{pd} = 7.7$ ns (typ.) (VCC = 5 V)
- Low power dissipation: $ICC = 4 \mu A (max) (Ta = 25^{\circ}C)$
- Compatible with TTL outputs: VIL = 0.8 V (max)
 - $V_{IH} = 2.0 V (min)$
- Power down protection is provided on all inputs and outputs.
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Low noise: $V_{OLP} = 1.5 V (max)$
- Pin and function compatible with the 74 series (74AC/HC/F/ALS/LS etc.) 373 type.

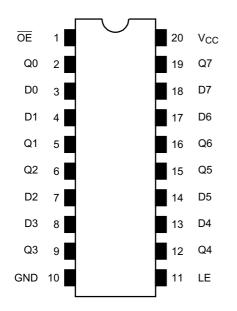
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

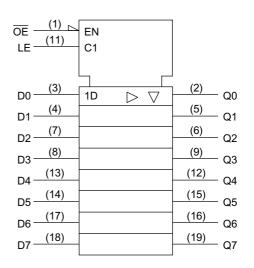

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

• The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others


The information contained herein is subject to change without notice.

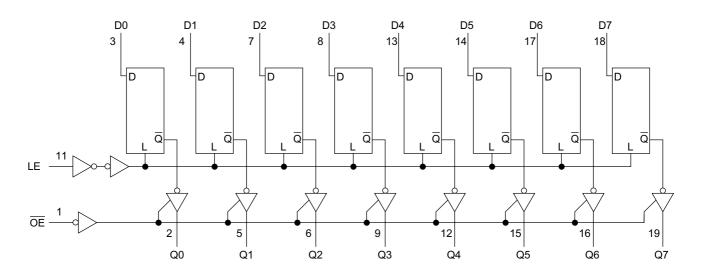

Weight: 0.03 g (typ.)

<u>TOSHIBA</u>

Pin Assignment (top view)

IEC Logic Symbol

Truth Table


	Outputs		
ŌĒ	LE	D	Outputs
Н	Х	Х	Z
L	L	Х	Q _n
L	Н	L	L
L	Н	Н	Н

X: Don't care

Z: High impedance

 $\mathsf{Q}_n\!\!:\mathsf{Q}$ outputs are latched at the time when the LE input is taken to a low logic level.

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	Vour	-0.5~7.0 (Note1)	V
DC output voltage	Vout	-0.5~V _{CC} + 0.5 (Note2)	v
Input diode current	I _{IK}	-20	mA
Output diode current	I _{OK}	±20 (Note3)	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±75	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65~150	°C

Note1: Output in off-state

Note2: High or low state. $\mathsf{I}_{\mathsf{OUT}}$ absolute maximum rating must be observed.

Note3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	4.5~5.5	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	Maxim	0~5.5 (Note4)	V	
Output voltage	Vout	0~V _{CC} (Note5)	v	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	0~20	ns/V	

Note4: Output in off-state

Note5: High or low state

Electrical Characteristics

DC Characteristics

Characteristics		Symbol Test Condition			Ta = 25°C			Ta = -40~85°C		Unit	
Characte	Characteristics		Symbol Test Cond		$V_{CC}(V)$	Min	Тур.	Max	Min	Max	Onit
Input voltage	High level	VIH		_	4.5~5.5	2.0	_	_	2.0	_	V
input voltage	Low level	VIL		_	4.5~5.5		_	0.8	_	0.8	v
	High level	Veri	$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$	4.5	4.4	4.5	_	4.4	_	V
	rligirlevel	V _{OH}	or V _{IL}	$I_{OH} = -8 \text{ mA}$	4.5	3.94	_	_	3.80	_	
Output voltage	High level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 50 \ \mu A$	4.5	_	0	0.1	—	0.1	
				$I_{OL} = 8 \text{ mA}$	4.5		—	0.36	—	0.44	
3-state output o	ff-state current	I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND		5.5	-	_	±0.25	_	±2.50	μΑ
Input leakage co	urrent	I _{IN}	V _{IN} = 5.5 V	√ or GND	0~5.5	_	_	±0.1		±1.0	μA
Quiescent supply current		ICC	$V_{IN} = V_{CC}$ or GND		5.5	_	—	4.0	—	40.0	μA
		ICCT	Per input: $V_{IN} = 3.4 V$ Other input: V_{CC} or GND		5.5	_	_	1.35	_	1.50	mA
Output leakage	current	I _{OPD}	V _{OUT} = 5.5 V		0		—	0.5	—	5.0	μA

Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics S	Symbol	Test Condition		Ta = 25°C		Ta = −40~85°C	Unit
	Symbol	Test Condition	V _{CC} (V)	Тур.	Limit	Limit	Unit
Minimum pulse width (LE)	t _{w (H)} t _{w (L)}	_	5.0 ± 0.5	_	6.5	8.5	ns
Minimum set-up time	ts	—	5.0 ± 0.5	_	1.5	1.5	ns
Minimum hold time	t _h	_	5.0 ± 0.5		3.5	3.5	ns

AC Electrical Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition			-	Ta = 25°C			Ta = −40~85°C	
Characteristics Symb		Test Condition	$V_{CC}(V)$	C _L (pF)	Min	Тур.	Max	Min	Max	Unit
Propagation delay time	t _{pLH}		5.0 ± 0.5	15	_	7.7	12.3	1.0	13.5	ns
(LE-Q)	t _{pHL}		5.0 ± 0.5	50	_	8.5	13.3	1.0	14.5	115
Propagation delay time	t _{pLH}		50+05	15	_	5.1	8.5	1.0	9.5	ns
(D-Q)	t _{pHL}		5.0 ± 0.5	50	_	5.9	9.5	1.0	10.5	
3-state output enable time ^t pZL t _{pZH}	t _{oZL}	$R_L = 1 \ k\Omega$	5.0 ± 0.5	15		6.3	10.9	1.0	12.5	ns
	t _{pZH}			50		7.1	11.9	1.0	13.5	
3-state output disable time	t _{pLZ} t _{pHZ}	$R_L = 1 \ k\Omega$	5.0 ± 0.5	50		8.8	11.2	1.0	12.0	ns
Output to output skew	t _{osLH} t _{osHL}	(Note6)	5.0 ± 0.5	50		_	1.0	_	1.0	ns
Input capacitance	C _{IN}	-			_	4	10	_	10	pF
Output capacitance	C _{OUT}	_		_	9	_	_		pF	
Power dissipation capacitance	C _{PD}			(Note7)		25		_	_	pF

Note6: Parameter guaranteed by design.

 $t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|$

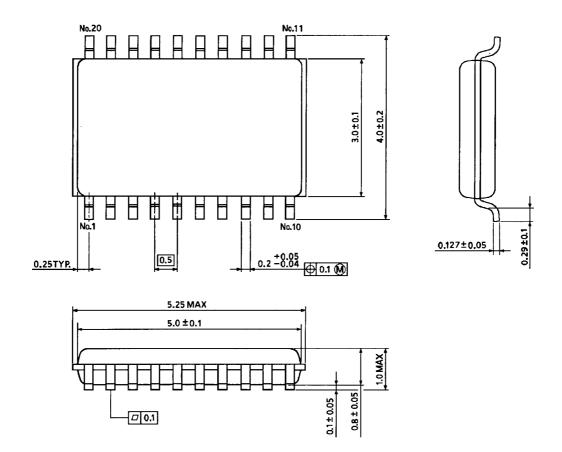
Note7: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8$ (per latch)

And the total $C_{\mbox{PD}}$ when n pcs. of latch operate can be gained by the following equation:

C_{PD} (total) = 14 + 11 • n


Noise Characteristics (Input: t_r = t_f = 3 ns)

Characteristics	Symbol	Test Condition	_	Ta = 25°C		Unit
Characteristics	Symbol	Test Condition	$V_{CC}(V)$	Тур.	Limit	Unit
Quiet output maximum dynamic V_{OL}	V _{OLP}	$C_L = 50 \text{ pF}$	5.0	1.1	1.5	V
Quiet output minimum dynamic V_{OL}	V _{OLV}	$C_L = 50 \text{ pF}$	5.0	-1.1	-1.5	V
Minimum high level dynamic input voltage V_{IH}	VIHD	C _L = 50 pF	5.0	_	2.0	V
Maximum low level dynamic input voltage V_{IL}	V _{ILD}	C _L = 50 pF	5.0	_	0.8	V

Package Dimensions

VSSOP20-P-0030-0.50

Unit : mm

Weight: 0.03 g (typ.)