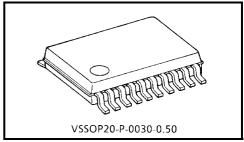
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T C 7 M Z 2 4 4 F K


Low Voltage Octal Bus Buffer with 5 V Tolerant Inputs and Outputs

The TC7MZ244FK is a high performance CMOS octal bus buffer. Designed for use in 3.3 V systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) V_{CC} applications, but it could be used to interface to 5 V supply environment for both inputs and outputs.

The TC7MZ244FK is a non-inverting 3-state buffer having two active-low output enables. This device is designed to be used with 3-state memory address drivers, etc.

All inputs are equipped with protection circuits against static discharge.

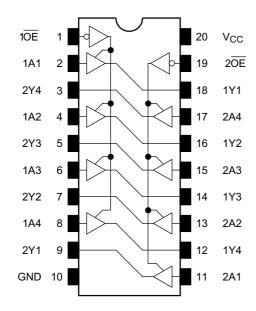
Weight: 0.03 g (typ.)

Features

- Low voltage operation: $VCC = 2.0 \sim 3.6 V$
- High speed operation: $t_{pd} = 6.5 \text{ ns} (max) (V_{CC} = 3.0 \sim 3.6 \text{ V})$
- Output current: $|I_{OH}|/I_{OL} = 24 \text{ mA} (min) (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: ±500 mA
- Package: VSSOP (US20)
- Power down protection is provided on all inputs and outputs.
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 244 type.

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..


- The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

TOSHIBA

Pin Assignment (top view)

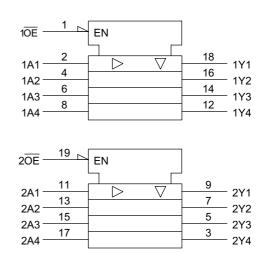
Truth Table

Inp	uts	Outputs
ŌĒ	A _n	Outputs
L	L	L
L	Н	Н
Н	Х	Z

X: Don't care

Z: High impedance

Maximum Ratings


Characteristics	Symbol	Rating	Unit	
Supply voltage range	V _{CC}	-0.5~7.0	V	
DC input voltage	V _{IN}	-0.5~7.0	V	
DC output voltage	Vout	-0.5~7.0 (Note1)	V	
De ouput voltage	V001	-0.5~V _{CC} + 0.5 (Note2)	v	
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note3)	mA	
DC output current	I _{OUT}	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65~150	°C	

Note1: Output in off-state

Note2: High or low state. IOUT absolute maximum rating must be observed.

Note3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

IEC Logic Symbol

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0~3.6	V	
Supply vollage	VCC	1.5~3.6 (Note4)	v	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	Vour	0~5.5 (Note5)	V	
Output voltage	Vout	0~V _{CC} (Note6)	v	
Output current	lev/lev	±24 (Note7)	mA	
Output current	I _{OH} /I _{OL}	±12 (Note8)	ma	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	0~10 (Note9)	ns/V	

Note4: Data retention only

Note5: Output in off-state

Note6: High or low state

Note7: V_{CC} = 3.0~3.6 V

Note8: $V_{CC} = 2.7 \sim 3.0 \text{ V}$

Note9: $V_{IN} = 0.8 \sim 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics (Ta = -40~85°C)

Characteristics Symbol Test Condition			Min	Max	Unit			
Characte		Symbol	Test Condition		V _{CC} (V)	IVIIII	wax	Unit
Input voltage	High level	VIH		—	2.7~3.6	2.0	_	v
input voltage	Low level	V _{IL}		—	2.7~3.6	_	0.8	v
				I _{OH} = −100 μA	2.7~3.6	V _{CC} - 0.2	_	V
	High level	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -12 \text{ mA}$	2.7	2.2	—	
				I _{OH} = -18 mA	3.0	2.4	—	
Output voltage				I _{OH} = -24 mA	3.0	2.2	—	
				$I_{OL} = 100 \ \mu A$	2.7~3.6	_	0.2	
Law laws	Ma.	VIN = VIH or VII	I _{OL} = 12 mA	2.7	_	0.4		
	Low level V _{OL}	VOL	VIN = VIH OL VIL	I _{OL} = 16 mA	3.0	_	0.4	
				$I_{OL} = 24 \text{ mA}$	3.0	_	0.55	
Input leakage cu	urrent	I _{IN}	$V_{IN} = 0 \sim 5.5 V$		2.7~3.6	_	±5.0	μA
3-state output off-state current I _{OZ}		107	$V_{IN} = V_{IH} \text{ or } V_{IL}$		2.7~3.6	_	±5.0	μΑ
		102	V _{OUT} = 0~5.5 V		2.7~5.0			
Power off leaka	ge current	IOFF	$V_{IN}/V_{OUT} = 5.5 V$		0	—	10.0	μA
Quiescent supply current			$V_{IN} = V_{CC}$ or GND		2.7~3.6	—	10.0	
Quiescent suppi	escent supply current		V _{IN} /V _{OUT} = 3.6~5.5 V		2.7~3.6	—	±10.0	μA
Increase in I _{CC I}	per input	ΔI_{CC}	$V_{IH} = V_{CC} - 0.6 V$ 2.7		2.7~3.6		500	

AC Characteristics (Ta = -40~85°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	7.5	ns
Topagation delay time	t _{pHL}		3.3 ± 0.3	1.5	6.5	115
Output enable time	t _{pZL}	Figure 1, Figure 3	2.7		9.0	ns
	t _{pZH}		3.3 ± 0.3	1.5	8.0	
Output disable time	t _{pLZ}	Figure 1, Figure 3	2.7	_	8.0	ns
	t _{pHZ}		3.3 ± 0.3	1.5	7.0	115
Output to output skew	t _{osLH}	(Note10)	2.7	_	_	ns
	t _{osHL}		3.3 ± 0.3	_	1.0	115

Note10: This parameter is guaranteed by design.

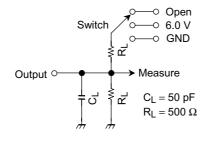
 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.5 \text{ ns}$, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V_{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
Quiet output minimum dynamic VOL	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	—	3.3	7	pF
Output capacitance	C _{OUT}	_	3.3	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Note11)	3.3	25	pF


Note11: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

TOSHIBA

AC Test Circuit

Parameter	Switch
t _{pLH} , t _{pHL}	Open
t _{pLZ} , t _{pZL}	6.0 V
t _{pHZ} , t _{pZH}	GND

Figure 1

AC Waveform

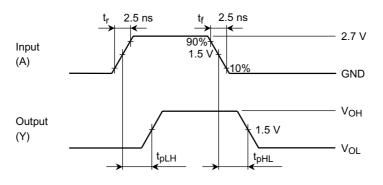


Figure 2 t_{pLH}, t_{pHL}

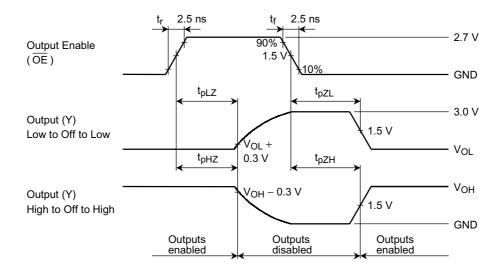
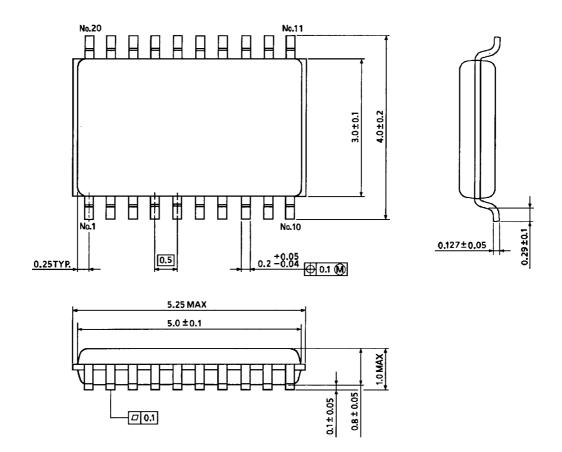



Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

Package Dimensions

VSSOP20-P-0030-0.50

Unit : mm

Weight: 0.03 g (typ.)