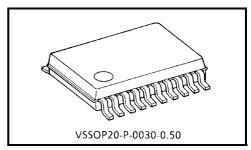
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MZ540FK


Low Voltage Octal Bus Buffer (inverted) with 5 V Tolerant Inputs and Outputs

The TC7MZ540FK is a high performance CMOS octal bus buffer. Designed for use in 3.3 V systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage $(3.3\ V)\ VCC$ applications, but it could be used to interface to $5\ V$ supply environment for both inputs and outputs.

The TC7MZ540FK is an inverting 3-state buffer having two active-low output enables. When either $\overline{OE}1$ or $\overline{OE}2$ are high, the terminal outputs are in the high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.03 g (typ.)

Features

- Low voltage operation: $V_{CC} = 2.0 \sim 3.6 \text{ V}$
- High speed operation: $t_{pd} = 6.5 \text{ ns (max) (VCC} = 3.0 \sim 3.6 \text{ V)}$
- Output current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min) (V}_{CC} = 3.0 \text{ V)}$
- Latch-up performance: ±500 mA
- Package: VSSOP (US20)
- Power down protection is provided on all inputs and outputs.
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 540 type.

000630EBA1

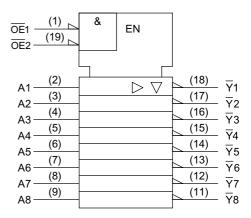
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The products described in this document are subject to the foreign exchange and foreign trade laws

• The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.

[•] The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

	Inputs					
OE1	OE2	An	Outputs			
Н	Х	Х	Z			
Х	Н	Х	Z			
L	L	Н	L			
L	L	L	Н			

X: Don't care

Z: High impedance

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Supply voltage range	V _{CC}	-0.5~7.0	V	
DC input voltage	V _{IN}	-0.5~7.0	V	
DC output voltage	V	-0.5~7.0 (Note1)	V	
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5 (Note2)	V	
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note3)	mA	
DC output current	lout	±50	mA	
Power dissipation	P _D	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65~150	°C	

Note1: Output in off-state

Note2: High or low state. IOUT absolute maximum rating must be observed.

Note3: V_{OUT} < GND, V_{OUT} > V_{CC}

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0~3.6	٧	
Supply voltage	VCC	1.5~3.6 (Note4)	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	Vout	0~5.5 (Note5)	V	
Output voltage	VOU1	0~V _{CC} (Note6)	V	
Output current	IOH/IOI	±24 (Note7)	mA	
Output current	IOH/IOL	±12 (Note8)	IIIA	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	0~10 (Note9)	ns/V	

Note4: Data retention only

Note5: Output in off-state

Note6: High or low state

Note7: $V_{CC} = 3.0 \sim 3.6 \text{ V}$

Note8: $V_{CC} = 2.7 \sim 3.0 \text{ V}$

Note9: $V_{IN} = 0.8 \sim 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics ($Ta = -40 \sim 85$ °C)

Characte	Characteristics Symbol Test Condition				Min	May	Lloit			
Characte	eristics	Symbol			V _{CC} (V)	IVIII	Max	Unit		
Input voltage	High level	V_{IH}		_	2.7~3.6	2.0	_	V		
iliput voitage	Low level	V_{IL}		_	2.7~3.6		0.8	٧		
				$I_{OH} = -100 \mu A$	2.7~3.6	V _{CC} - 0.2	_			
	High level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_			
				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_			
Output voltage				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	V		
				$I_{OL} = 100 \mu A$	2.7~3.6	_	0.2			
	Low level	V_{OL}	V _{IN} = V _{IH} or V _{II}	I _{OL} = 12 mA	2.7	_	0.4			
	LOW level	VOL	AIV = AIH OL AIT	I _{OL} = 16	AIM — AIH OL AIT	$I_{OL} = 16 \text{ mA}$	3.0	_	0.4	
					I _{OL} = 24 mA	3.0	_	0.55		
Input leakage cu	rrent	I _{IN}	V _{IN} = 0~5.5 V		2.7~3.6	_	±5.0	μΑ		
2 state output of	state current		out off-state current I _{OZ}		$V_{IN} = V_{IH}$ or V_{IL}	$V_{IN} = V_{IH}$ or V_{IL}			±5.0	
3-State output of	i-state current	loz	V _{OUT} = 0~5.5 V		2.7~3.6	_	±5.0	μΑ		
Power off leakage	je current	I _{OFF}	$V_{IN}/V_{OUT} = 5.5 V 0$		0	_	10.0	μΑ		
Quicecent cumpl	v ourront	laa	$V_{IN} = V_{CC}$ or GND		2.7~3.6	_	10.0			
Quiescent suppl	y current	Icc	V _{IN} /V _{OUT} = 3.6~5.5 V		2.7~3.6	_	±10.0	μΑ		
Increase in I _{CC} p	per input	ΔI_{CC}	$V_{IH} = V_{CC} - 0.6 V$ 2.7~3.6		2.7~3.6		500			

AC Characteristics ($Ta = -40 \sim 85$ °C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Dronogation doloy time	t _{pLH}	Figure 1, Figure 2	2.7	_	7.5	20
Propagation delay time	t _{pHL}	rigure 1, rigure 2	3.3 ± 0.3	1.5	6.5	ns
Output enable time	t _{pZL}	Figure 1, Figure 3	2.7		9.5	- ns
	t _{pZH}		3.3 ± 0.3	1.5	8.5	
Output disable time	t _{pLZ}	Figure 1, Figure 3	2.7	_	8.5	ns
Output disable time	t _{pHZ}	rigule 1, rigule 3	3.3 ± 0.3	1.5	7.5	115
Output to output skew	t _{osLH}	(Note10)	2.7		_	ns
Output to output skew	t _{osHL}	(Note 10)	3.3 ± 0.3		1.0	115

Note10: This parameter is guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

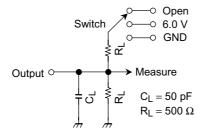
Dynamic Switching Characteristics

(Ta = 25°C, Input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V_{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	3.3	7	pF
Output capacitance	C _{OUT}	_	3.3	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Note1) 3.3	40	pF


Note11: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 (per bit)$

AC Test Circuit

Parameter	Switch
t _{pLH} , t _{pHL}	Open
t _{pLZ} , t _{pZL}	6.0 V
t _{pHZ} , t _{pZH}	GND

Figure 1

AC Waveform

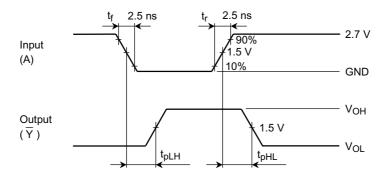


Figure 2 t_{pLH} , t_{pHL}

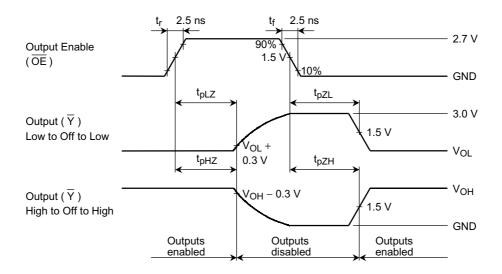
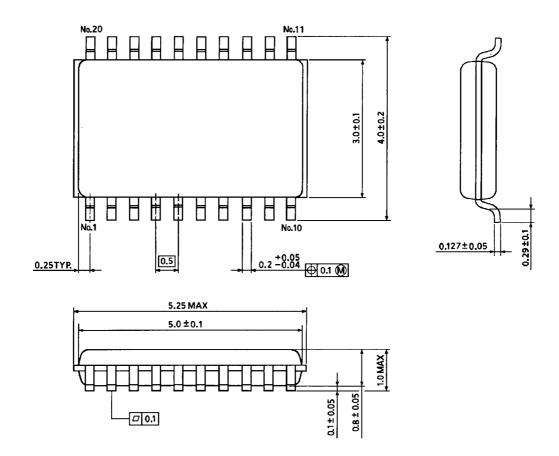



Figure 3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

Package Dimensions

Weight: 0.03 g (typ.)