

MICROCIRCUIT DATA SHEET

Original Creation Date: 08/08/95 Last Update Date: 10/23/98

Last Major Revision Date: 08/08/95

QUAD OP AMP

MNLM149-X REV 0B1

General Description

The LM149 is a quad op amp. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar LM741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single LM741 type op amp. Other features include input offset currents and input bias current which are much less than those of standard LM741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 has the same features as the LM148 plus a gain bandwidth product of a 4 MHz at a gain of 5 or greater.

The LM149 can be used anywhere multiple LM741 or LM1558 type amplifiers are being used and in applications where amplifier matching, high packing density, or high speed is required.

Industry Part Number

NS Part Numbers

LM149

LM149J/883

Prime Die

LM149

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1	Static tests at	+25
	2	Static tests at	+125
	3	Static tests at	-55
Quality Conformance Inspection	4	Dynamic tests at	+25
	5	Dynamic tests at	+125
MIL-STD-883, Method 5005	6	Dynamic tests at	-55
MID-SID-003, Method 3003	7	Functional tests at	+25
	8A	Functional tests at	+125
	8B	Functional tests at	-55
	9	Switching tests at	+25
	10	Switching tests at	+125
	11	Switching tests at	-55

Features

- 741 op amp operating characteristics	
- Low supply current drain	0.6mA/Amplifier
- Class AB output stage-no crossover distortion	
- Pin compatible with the LM124	
- Low input offset voltage	1mV
- Low input offset current	4nA
- Low input bias current	30nA
- Gain bandwidth product $(Av \ge 5)$	4Mhz
- High degree of isolation between amplifiers	120dB

- Overload protection for inputs and outputs

(Absolute Maximum Ratings)

(Note 1)

(Note 4)

Supply Voltage + 22V Differential Input Voltage ± 44V Output Short Circuit Duration (Note 2) Continuous Power Dissipation (Note 3) (Pd at 25 C) 1100mW Maximum Junction Temperature (TjMAX) 150 C Operating Temperature Range -55 C \leq TA \leq +125 C Storage Temperature Range -65 C to +150 C Lead Temperature (Soldering, 10 seconds) 300 C Thermal Resistance ThetaJA (Still Air) 103 C/W (500LF/Min Air flow) 52 C/W 19 C/W ThetaJC ESD Tolerance

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

500V

- Any of the amplifier outputs can be shorted to ground indefinitely however, more than one should not be simultaneously shorted as the maximum junction temperature will be Note 2: exceeded.
- The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to Note 3: ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is less.

 Note 4: Human body model, 1.5K Ohms in series with 100pF.

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vs=\pm 15V$, Rs=0.

SYMBOL	PARAMETER	PARAMETER CONDITIONS NOTE		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage	Rs = 10K Oohms			-5	5	mV	1
	Voicage				-6	6	mV	2, 3
Iio	Input Offset Current	Rs = 10K Ohms			-25	25	nA	1
	Carrene				-75	75	nA	2, 3
+Iib	Input Bias Current	Rs = 10K Ohms			-100		nA	1
					-325		nA	2, 3
-Iib	Input Bias Current	Rs = 10K Ohms				+100	nA	1
						+325	nA	2, 3
Avs+	Open Loop Voltage Gain	R1 = 2K Ohms, Vout = 0V to +10V, Rs = 10K Ohms	2		50		K	1
			2		25		K	2, 3
Avs-	Open Loop Voltage Gain	R1 = 2K Ohms, Vout = 0V to -10V, Rs = 10K Ohms	2		50		K	1
		NS - TOK OTHES	2		25		K	2, 3
Icc	Power Supply Vs = ± 15V Current			3.6	mA	1		
CMRR	Common Mode Rejection Ratio	Vcm = <u>+</u> 12V			70		dB	1, 2,
SVRR	Supply Voltage Rejection Ratio	Rs = 10K Ohms, Vs = \pm 15 to \pm 5V			77		dB	1, 2,
+Swing	Output Voltage Swing	Rl = 10K Ohms			+12		V	1, 2,
		Rl = 2K Ohms			+10		V	1, 2,
-Swing	Output Voltage Swing	Rl = 10K Ohms				-12	V	1, 2,
		Rl = 2K Ohms				-10	V	1, 2,
Ios+	Short Circuit Current				-45	-14	mA	1
Ios-	Short Circuit Current				+14	+45	mA	1
IBVcc	Breakdown Supply $Vs = \pm 22V$, $Vin = \pm 19V$ Current					9	mA	1, 2,
+Il	Input Leakage Current	$Vs = \pm 22V$, $Vin = \pm 19V$				+10	uA	1, 2,
-Il	Input Leakage Current	Vs = ±22V, Vin = ±19V			-10		uA	1, 2,

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vs=\pm15V$, Rs=0.

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Rin	Input Resistance		1		0.8		MOhms	3 1
Vin	Input Voltage Range	Vs = ±22V	1		<u>+</u> 19		V	1
		$Vs = \pm 15V$	1		<u>+</u> 12		V	1, 2,
Vdiff	Differential Input Voltage	Vcc = ±22V	1		<u>+</u> 38		V	1

AC PARAMETERS

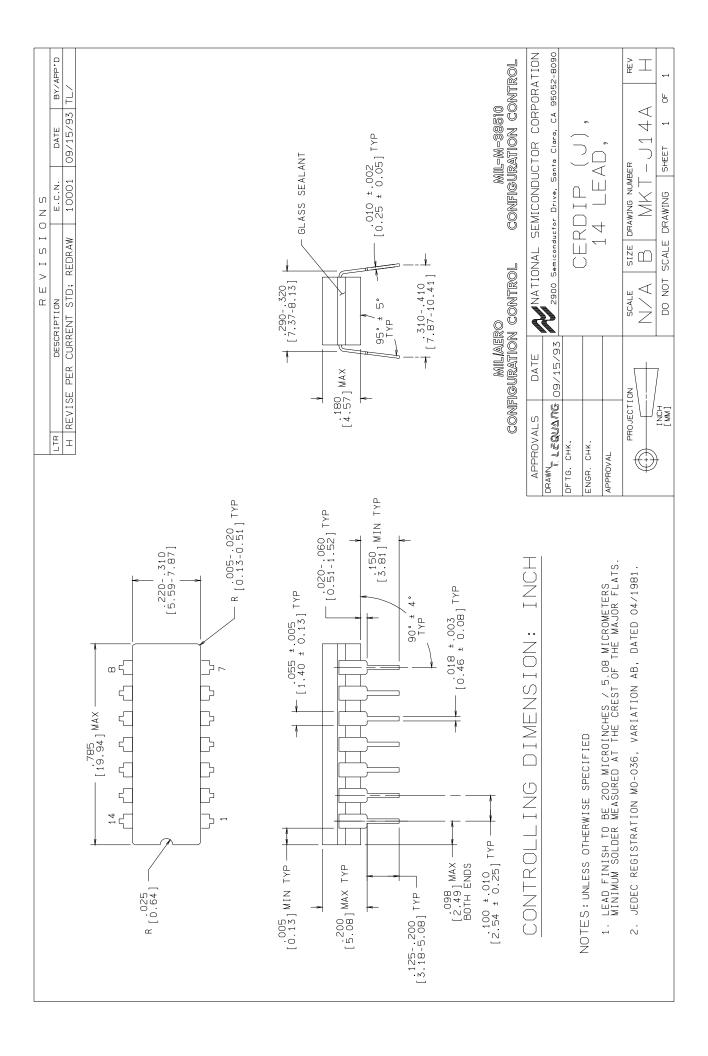
(The following conditions apply to all the following parameters, unless otherwise specified.) AC: $Vs = \pm 15V$, Rs = 0.

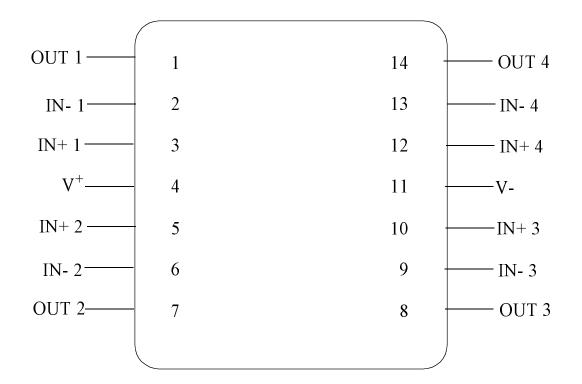
Gbw	Gain Bandwidth	1	2	MHz	7
	Product				

DC PARAMETERS: DRIFT VALUES

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vs = \pm 15V$, Rs = 0. "Deltas not required on B-Level product. Deltas required for S-Level product ONLY as specified on Internal Processing Instructions (IPI)."

Vio	Input Offset Voltage	Rs = 10K Ohms		-1	1	mV	1
Iio	Input Offset Rs = 10K Ohms Current			-5	5	nA	1


Parameter tested go-no-go.


Note 1: Parameter Note 2: K = V/mV.

Graphics and Diagrams

GRAPHICS#	DESCRIPTION
09173HRA2	CERDIP (J), 14 LEAD (B/I CKT)
J14ARH	CERDIP (J), 14 LEAD (P/P DWG)
P000230A	CERDIP (J), 14 LEAD (PINOUT)

See attached graphics following this page.

LM149J 14 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000230A

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0B1	M0002829	10/23/98	Barbara Lopez	Update MDS: MNLM149-X Rev. 0B0 to MNLM149-X Rev. 0B1. Updated Burn-in graphic and added pinout.