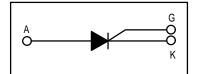
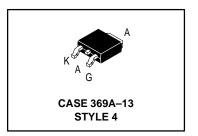
Advance Information

Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control, process control, temperature, light and speed control.


- Small Size
- · Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Available in Surface Mount Lead Form Case 369A


ORDERING INFORMATION

To Obtain "DPAK" in Surface Mount Leadform (Case 369A):
 Shipped in 16 mm Tape and Reel — Add "T4" Suffix to Device Number,
 i.e., MCR718T4

MCR716 MCR718

SCRs 4.0 AMPERES RMS 400 thru 600 VOLTS

MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise noted.)

Characteristic		Symbol	Value	Unit
Peak Repetitive Off–State Voltage ¹ Peak Repetitive Reverse Voltage $(T_J = -40 \text{ to } +110^{\circ}\text{C}, R_{GK} = 1 \text{ K}\Omega)$	MCR716 MCR718	VDRM VRRM	400 600	Volts
On-State RMS Current (All conduction Angles; T _C = 90°C)		I _T (RMS)	4.0	Amps
Average On-State Current (All conduction Angles; T _C = 90°C)		lT(AV)	2.6	Amps
Peak Non–Repetitive Surge Current (One Half Cycle, 60 Hz, T _J = 110°C)		ITSM	25	Amps
Circuit Fusing Consideration (t = 8.3 msec)		l ² t	2.6	A ² sec
Peak Gate Power (Pulse Width ≤ 10 µs, T _C = 90°C)		P _{GM}	0.5	Watt
Average Gate Power (t = 8.3 msec, T _C = 90°C)		P _{G(AV)}	0.1	Watt
Peak Gate Current (Pulse Width \leq 10 μ s, T _C = 90°C)		I _{GM}	0.2	Amp
Operating Junction Temperature Range		TJ	-40 to +110	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C

THERMAL CHARACTERISTICS

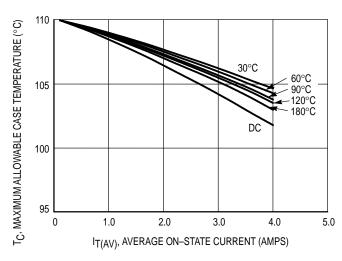
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	3.0	°C/W
Thermal Resistance, Junction to Ambient (Case 369A)(2)	$R_{ heta JA}$	80	°C/W

^{1..}V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

2. Case 369A, when surface mounted on minimum recommended pad size.

MCR716 MCR718

ELECTRICAL CHARACTERISTICS (T $_{C}$ = 25°C and R $_{GK}$ = 1 K Ω unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
Peak Reverse Gate Blocking Voltage (IGR = 10 µA)	VGRM	10	12.5	18	Volts
Peak Forward Blocking Current ¹ Peak Reverse Blocking Current ³ (VAK = Rated VDRM or VRRM) T _C = 25°C	IDRM IRRM	_	_	10	μΑ
$T_{C} = 110^{\circ}C$				200	
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)	^I RGM	_	_	1.2	μΑ
Peak On–State Voltage ² (I _{TM} = 5.0 A Peak) (I _{TM} = 8.2 A Peak)	V _{TM}	_	1.3 1.5	1.5 2.2	Volts
Gate Trigger Current (Continuous dc) ³ $(V_D = 12 \text{ Vdc}, R_L = 30 \text{ Ohms}, T_C = 25^{\circ}\text{C})$ $(V_D = 12 \text{ Vdc}, R_L = 30 \text{ Ohms}, T_C = -40^{\circ}\text{C})$	lGT	1.0	25 —	75 300	μА
Gate Trigger Voltage (Continuous dc) ³ $(V_D = 12 \text{ Vdc}, R_L = 30 \text{ Ohms}, T_C = 25^{\circ}\text{C})$ $(V_D = 12 \text{ Vdc}, R_L = 30 \text{ Ohms}, T_C = -40^{\circ}\text{C})$ $(V_D = 12 \text{ Vdc}, R_L = 30 \text{ Ohms}, T_C = 110^{\circ}\text{C})$	VGT	0.3 — 0.2	0.55 — —	0.8 1 —	Volts
Holding Current ¹ ($V_D = 12 \text{ Vdc}$, $I_G = 2.0 \text{ mA}$, $I_{T(init)} = 200 \text{ mA}$, $I_{C} = 25^{\circ}\text{C}$) ($V_D = 12 \text{ Vdc}$, $I_G = 2.0 \text{ mA}$, $I_{T(init)} = 200 \text{ mA}$, $I_{C} = -40^{\circ}\text{C}$)	Ιн	0.4	1.0 —	5.0 10	mA
Latching Current ¹ ($V_D = 12 \text{ Vdc}, I_G = 2.0 \text{ mA}, T_C = 25^{\circ}\text{C}$) ($V_D = 12 \text{ Vdc}, I_G = 2.0 \text{ mA}, T_C = -40^{\circ}\text{C}$)	ΙL	_ _	_	5.0 10	mA
DYNAMIC CHARACTERISTICS		_	-	-	-
Total Turn-On Time (Source Voltage = 12 V, Ro = 6 KO, Iz = 8 A(pk), Roy = 1 KO)	tgt	_	2.0	5.0	μs

Total Turn-On Time (Source Voltage = 12 V, R _S = 6 K Ω , I _T = 8 A(pk), R _{GK} = 1 K Ω) (V _D = Rated V _{DRM} , Rise Time = 20 ns, Pulse Width = 10 μ s)	^t gt	_	2.0	5.0	μѕ
Critical Rate of Rise of Off–State Voltage (V _D = 0.67 x Rated V _{DRM} , Exponential Waveform, T _J = 110°C)	dv/dt	5.0	10		V/μs
Repetitive Critical Rate of Rise of On–State Current (f = 60 Hz, I_{PK} = 30 A, PW = 100 μ s, dIG/dt = 1 A/ μ s)	di/dt	_	_	100	A/μs

^{1..} Ratings apply for negative gate voltage or R_{GK} = 1 K Ω . Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

^{2...}Pulse Test: Pulse Width \leq 2 ms, Duty Cycle \leq 2%.

^{3..} Does not include $R_{\mbox{GK}}$ current.

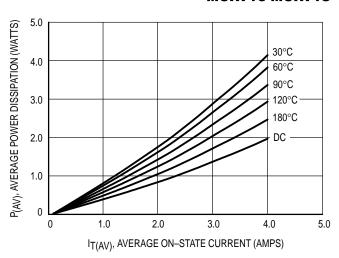


Figure 2. On-State Power Dissipation

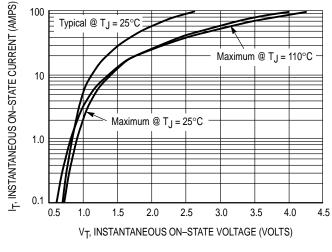
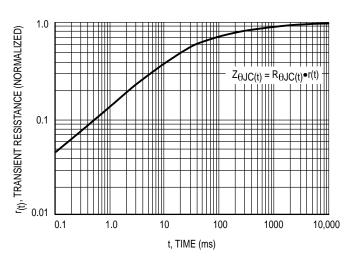



Figure 3. On-State Characteristics

Figure 4. Transient Thermal Response

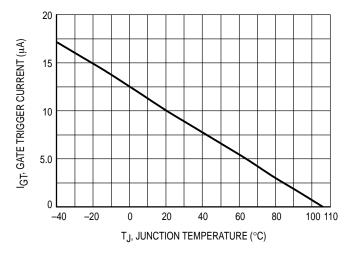


Figure 5. Typical Gate Trigger Current versus Junction Temperature

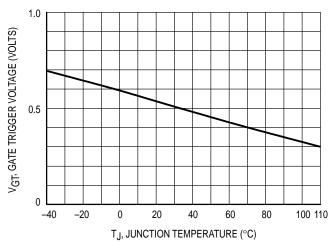
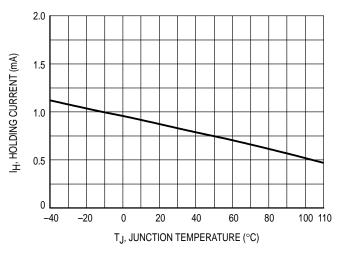



Figure 6. Typical Gate Trigger Voltage versus
Junction Temperature

MCR716 MCR718

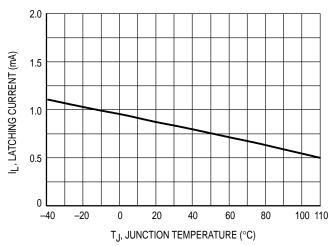
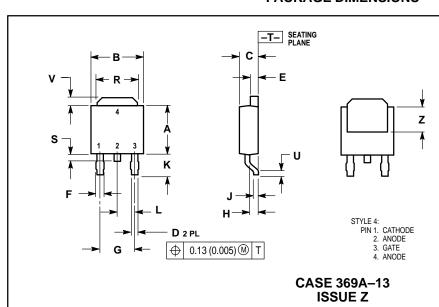



Figure 7. Typical Holding Current versus Junction Temperature

Figure 8. Typical Latching Current versus Junction Temperature

PACKAGE DIMENSIONS

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 V14 5M 1082
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.180	BSC	4.58	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.175	0.215	4.45	5.46
S	0.020	0.050	0.51	1.27
U	0.020		0.51	
٧	0.030	0.050	0.77	1.27
Z	0.138		3.51	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609

Motorola Fax Back System - US & Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

HOME PAGE: http://motorola.com/sps/

MCR716/D