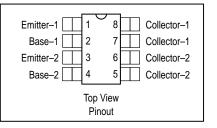

Plastic Power Transistors

SO-8 for Surface Mount Applications

- Collector –Emitter Sustaining Voltage V_{CEO(sus)}
 = 30 Vdc (Min) @ I_C = 10 mAdc
- High DC Current Gain hFE
 - = 125 (Min) @ I_C = 0.8 Adc
 - = 90 (Min) @ IC = 3.0 Adc
- Low Collector –Emitter Saturation Voltage V_{CE(sat)}
 - = 0.24 Vdc (Max) @ I_C = 1.2 Adc
 - = 0.55 Vdc (Max) @ I_C = 3.0 Adc
- Miniature SO-8 Surface Mount Package Saves Board Space


MMDJ3P03BJT

Motorola Preferred Device

DUAL BIPOLAR
POWER TRANSISTOR
PNP SILICON
30 VOLTS
3 AMPERES

CASE 751-05, Style 16 (SO-8)

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Base Voltage	VCB	45	Vdc
Collector–Emitter Voltage	VCEO	30	Vdc
Emitter–Base Voltage	VEB	±6.0	Vdc
Collector Current — Continuous — Peak	IC	3.0 5.0	Adc
Base Current — Continuous	lВ	1.0	Adc
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

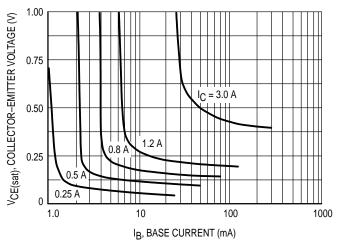
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance – Junction to Ambient on 1" sq. (645 sq. mm) Collector pad on FR–4 board material with one die operating. Thermal Resistance – Junction to Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR–4 board material with one die operating.	R _θ JA	100 185	°C/W
Total Power Dissipation @ T _A = 25°C mounted on 1" sq. (645 sq. mm) Collector pad on FR–4 board material with one die operating. Derate above 25°C	P _D	1.25 10	Watts mW/°C
Maximum Temperature for Soldering	TL	260	°C

This document contains information on a new product. Specifications and information are subject to change without notice.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV₃


MMDJ3P03BJT

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (I _C = 10 mAdc, I _B = 0 Adc)	VCEO(sus)	30	_	_	Vdc
Emitter–Base Voltage ($I_E = 50 \mu Adc$, $I_C = 0 Adc$)	V _{EBO}	6.0	_	_	Vdc
Collector Cutoff Current (VCE = 25 Vdc, RBE = 200 Ω) (VCE = 25 Vdc, RBE = 200 Ω , TJ = 125°C)	lCER	_ _		20 200	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc)	IEBO	_	_	10	μAdc
ON CHARACTERISTICS(1)					
Collector–Emitter Saturation Voltage (I _C = 0.8 Adc, I _B = 20 mAdc) (I _C = 1.2 Adc, I _B = 20 mAdc) (I _C = 3.0 Adc, I _B = 0.3 Adc)	VCE(sat)		0.15 — —	0.21 0.24 0.55	Vdc
Base–Emitter Saturation Voltage (I _C = 3.0 Adc, I _B = 0.3 Adc)	V _{BE} (sat)	_	_	1.25	Vdc
Base–Emitter On Voltage (I _C = 1.2 Adc, V _{CE} = 4.0 Vdc)	VBE(on)	_	_	1.10	Vdc
DC Current Gain ($I_C = 0.8 \text{ Adc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.2 \text{ Adc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 1.0 \text{ Vdc}$)	hFE	125 110 90	260 — —	_ _ _ _	_
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0 Adc, f = 1.0 MHz)	C _{ob}	_	100	150	pF
Input Capacitance (VEB = 8.0 Vdc)	C _{ib}	_	135	_	pF
Current–Gain — Bandwidth Product(2) (I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz)	f _T	_	110	_	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. (2) f_T = |h_{FE}| • f_{test}

MMDJ3P03BJT

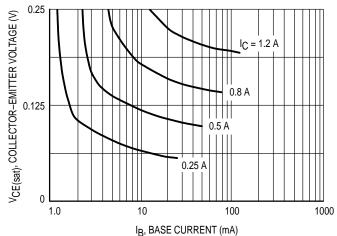
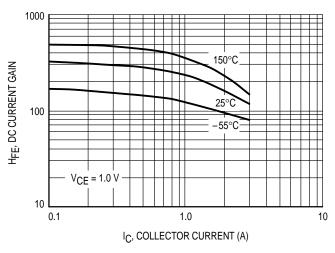



Figure 1. Collector Saturation Region

Figure 2. Collector Saturation Region

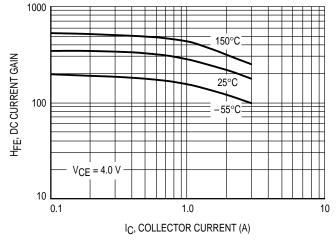
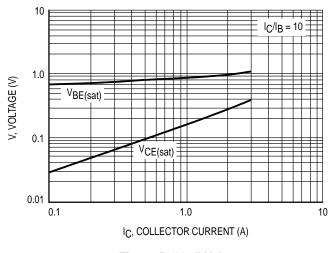



Figure 3. DC Current Gain

Figure 4. DC Current Gain

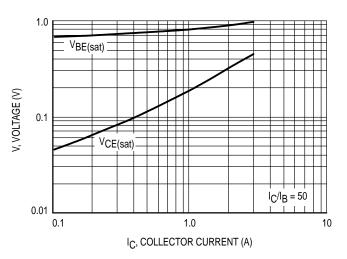


Figure 5. "On" Voltages

Figure 6. "On" Voltages

MMDJ3P03BJT

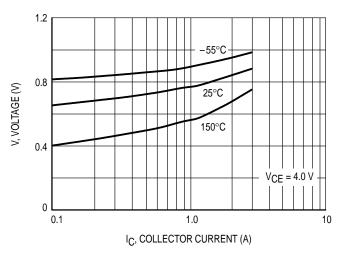


Figure 7. VBE(on) Voltage

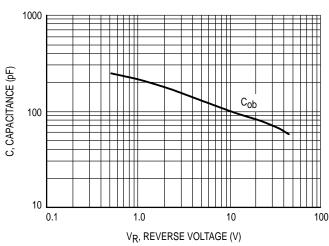


Figure 8. Output Capacitance

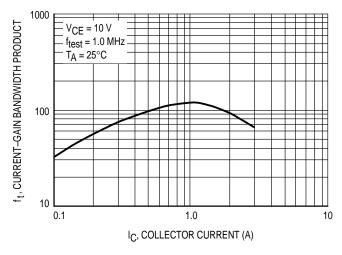


Figure 9. Current-Gain Bandwidth Product

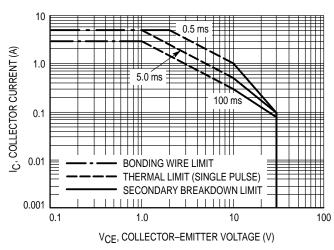


Figure 10. Active Region Safe Operating Area

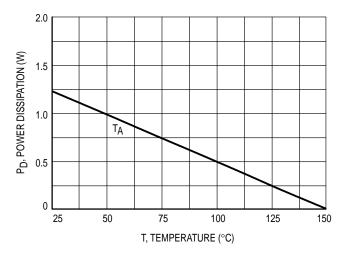


Figure 11. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and secondary breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 10 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. Secondary breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 12. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

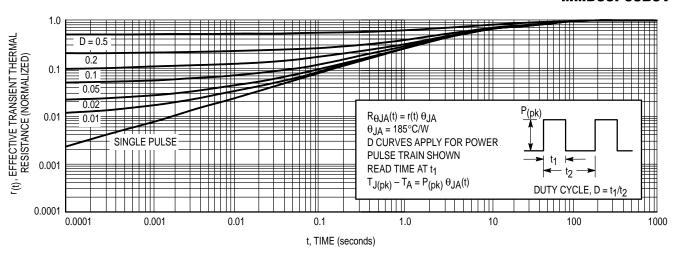
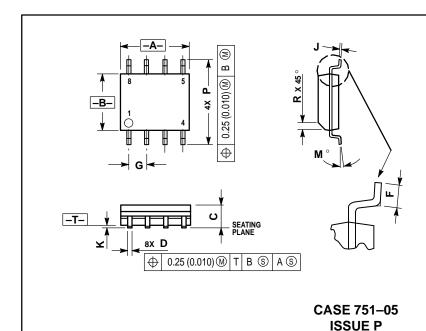



Figure 12. Thermal Response

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- DIMENSIONS ARE IN MILLIMETER
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION D DOES NOT INCLUDE MOLD
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.80	5.00	
В	3.80	4.00	
С	1.35	1.75	
D	0.35	0.49	
F	0.40	1.25	
G	1.27 BSC		
J	0.18	0.25	
K	0.10	0.25	
M	0 °	7 °	
Р	5.80	6.20	
R	0.25	0.50	

STYLE 16:

6.

PIN 1. EMITTER, DIE #1

- BASE DIF #1
- EMITTER, DIE #2
- BASE, DIE #2
- COLLECTOR, DIE #2 COLLECTOR, DIE #2
- COLLECTOR, DIE #1
- COLLECTOR, DIE #1

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola. Inc.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447 JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://www.mot.com/SPS/

 \Diamond

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MMDJ3P03BJT/D