

PI6CV855

PLL Clock Driver for 2.5V SSTL_2 DDR SDRAM Memory

Features

- PLL clock distribution optimized for SSTL_2 DDR SDRAM applications.
- Distributes one differential clock input pair to five differential clock output pairs.
- Inputs (CLK, CLK) and (FBIN, FBIN): SSTL_2
- Outputs (Yx, \overline{Yx}) , (FBOUT, FBOUT): SSTL_2
- External feedback pins (FBIN, FBIN) are used to synchronize the outputs to the input clocks.
- Operates at $AV_{DD} = 2.5V$ for core circuit and internal PLL, and $V_{DDQ} = 2.5V$ for differential output drivers
- Packaging (Pb-free & Green available): -28-pin TSSOP(L)

Description

PI6CV855 PLL clock device is developed for SSTL_DDR SDRAM applications. This PLL Clock Buffer is designed for 2.5 V_{DDQ} and 2.5V AV_{DD} operation and differential data input and output levels. The device is a zero delay buffer that distributes a differential clock input pair (CLK, \overline{CLK}) to five differential pairs of clock outputs (Y[0:4], $\overline{Y[0:4]}$) and one differential pair feedback clock outputs (FBOUT, FBOUT). The clock outputs are controlled by the input clocks (CLK, \overline{CLK}), the feedback clocks (FBIN, FBIN), and the Analog Power input (AV_{DD}). When the AV_{DD} is strapped low, the PLL is turned off and bypassed for test purposes.

The PI6CV855 is able to track Spread Spectrum Clocking to reduce EMI.

Block Diagram

Pin Configuration

Pinout Table

Pin Name	Pin No.	I/O Type	Description
CLK CLK	5 6	Ι	Reference Clock input
Y[0:4]	3,11,13,17,27		Clock outputs.
¥[0:4]	2,10,14,16,28	0	Complement Clock outputs.
FBOUT FBOUT	23 24		Feedback output, and Complement Feedback Output
FBIN FBIN	21 20	Ι	Feedback input, and Complement Feedback input
V _{DDQ}	4,12,18,22,26		Power Supply for I/O pins.
AV _{DD}	7	Power	Analog/core power supply. AV_{DD} can be used to bypass the PLL for testing purposes. When AV_{DD} is strapped to ground, PLL is bypassed & CLK is buffered directly to the device outputs.
AGND	8	Ground	Analog/core ground. Provides the ground reference for the analog/core circuitry
GND	1,9,15,19,25	SIGUR	Ground for I/O pins.

Function Table

-	Outputs				PLL State		
AV _{DD}	CLK	CLK	Y[0:4]	<u>Y[0:4]</u>	FBOUT	FBOUT	
GND	L	Н	L	Н	L	Н	Bypassed/Off
GND	Н	L	Н	L	Н	L	Bypassed/Off
2.5V(nom)	L	Н	L	Н	L	Н	on
2.5V(nom)	Н	L	Н	L	Н	L	on

Absolute Maximum Ratings (Over operating free-air temperature range)

Symbol	Parameter	Min.	Max.	Units
V _{DDQ} , AV _{DD}	I/O supply voltage range and analog/core supply voltage range	- 0.5	3.6	
VI	Input voltage range	- 0.5	V	V
Vo	Output voltage range	- 0.5	$V_{DDQ}+0.5$	
Tstg	Storage temperature	- 65	150	°C

Note: Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Timing Requirements (Over recommended operating free-air temperature)

Symbol	Description	$AV_{DD}, V_{DDQ} =$	Units		
Symbol	Description	Min.	Max.	Units	
f _{CK}	Operating clock frequency ^(1,2)	60	170	MII-	
	Application clock frequency ⁽³⁾	95	170	MHz	
t _{DC}	Input clock duty cycle	40	60	%	
t _{SIAB}	PLL stabilization time after powerup		100	μs	

Notes:

1. The PLL is able to handle spread spectrum induced skew.

2. Operating clock frequency indicates a range over which the PLL is able to lock, but in which the clock is not required to meet the other timing parameters. (Used for low-speed debug).

3. Application clock frequency indicates a range over which the PLL meets all of the timing parameters.

DC Specifications Recommended Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.	Units
AV _{DD}	Analog/core supply voltage	2.3	2.5	2.7	
V _{DDQ}	Output supply voltage	2.3	2.5	2.7	
V _{OH}	High-level output voltage	1.8		V _{DDQ}	
V _{OL}	Low-level output voltage	0		0.5	
V _{IX}	Input differential-pair crossing voltage	(V _{DDQ} /2) -0.2		$(V_{DDQ}/2) + 0.2$	V
V _{OX}	Output differential-pair crossing voltage at the SDRAM clock input	(V _{DDQ} /2) -0.2		$(V_{DDQ}/2) + 0.2$	
V _{IN}	Input voltage level	-0.3		V _{DDQ} +0.3	
V _{ID}	Input differential voltage between CLK and $\overline{\text{CLK}}$	0.36		V _{DDQ} +0.6	
V _{OD}	Output differential voltage between $Y[n]$ and $\overline{Y[n]}$ and FBOUT and FBOUT	0.7		V _{DDQ} +0.6	
T _A	Operating free air temperature	0		70	°C

Electrical Characteristics

Parameter		Test Conditions	A _{VDD} , V _{DDQ}	Min.	Тур.	Max.	Units
V _{IK}	All inputs	$I_I = -18 \text{mA}$	2.3V			-1.2	V
II	CLK, FBIN	$V_{I} = V_{DDQ}$ or GND	2.7V			±10	μΑ
I _{DDQ}	Dynamic supply current of VDDQ	$V_{DD} = 2.7 V^{(1)}$				300	mA
I _{ADD}	Dynamic supply current of AV _{DD}	$V_{DD} = 2.7 V^{(1)}$				12	mA
C	CLK and CLK	V = V or CND	2.51	2.0		2.0	жE
CI	FBIN and FBIN	$V_{I} = V_{DD}$ or GND	2.5V	2.0		3.0	pF

Notes:

1. Driving 9 or 18 DDR SDRAM memory chips with 120-ohm termination resistor for each clock output pair at 134 MHz.

AC Specifications

Switching characteristics over recommended operating free-air temperature range, $f_{CLK} > 100$ MHz (unless otherwise noted). (See Figure 1 and 2)

Description	Description	Diamon	AV _{CC} ,	T lasta		
Parameter	Description	Diagram	Min.	Nom.	Max	Units
t(θ)	Static phase offset ⁽¹⁾	Figure 4	-50	0	50	
tjit(cc)	Cycle-to-cycle jitter	Figure 3	-75		75	
tjit(per)	Period jitter	Figure 6	-75		75	ps
tjit(hper)	Half-period jitter	Figure 7	-100		100	
tsl(i)	Input clock slew rate ⁽²⁾	Figure 8	1.0		2.0	N // com
tsl(o)	Output clock slew rate ⁽²⁾	Figure 8	1.0		2.0	V/ns
tsk(o)	Output clock skew	Figure 5			100	ps
			·			
The PLL on the P	PI6CV855 meets all the above parameters	while supporting SSC	synthesizers w	vith the following	ng parameters ⁽	3).
	SSC modulation frequency		30.0		50.0	kHz
	SSC clock input frequency deviation		0.00		-0.50	%
	PLL loop bandwidth			2		MHz
	Phase angle				-0.031	degrees

Notes:

1. Static Phase offset does not include jitter.

2. The slew rate is determined from the IBIS model with test load shown in Figure 1.

3. The SSC requirements meet the Intel PC100 SDRAM Registered DIMM specification.

Figure 1. IBIS Model Output Load

Figure 2. Output Load Test Circuit

Figure 3. Cycle-to-Cycle Jitter

Figure 4. Static Phase Offset

Figure 5. Output Skew

Figure 6. Period Jitter

Figure 7. Half-Period Jitter

Figure 8. Input and Output Slew Rates

Packaging Mechanical: 28-Pin TSSOP(L)

Ordering Information

Ordering Code	Package Code	Package Type
PI6CV855L	L	28-pin 173-mil wide TSSOP
PI6CV855LE	L	Pb-free & Green, 28-pin 173-mil wide TSSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/