- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Option to Select Generate Parity and Check or Feed-Through Data/Parity in A-to-B or **B-to-A Directions**
- Simultaneously Generates and Checks **Parity**
- Packaged in Plastic Small-Outline Package

description

The SN74BCT899 is a 9-bit to 9-bit parity transceiver with transparent latches. The device can operate as a feed-through transceiver or it can generate/check parity from the 8-bit data buses in either direction. It has a current-sinking capability of 24 mA at the A bus and 64 mA at the B bus.

The SN74BCT899 features independent latchenable (LEAB or LEBA) inputs, a select (SEL) input for ODD/EVEN parity, and separate error-signal (ERRA or ERRB) outputs for checking parity.

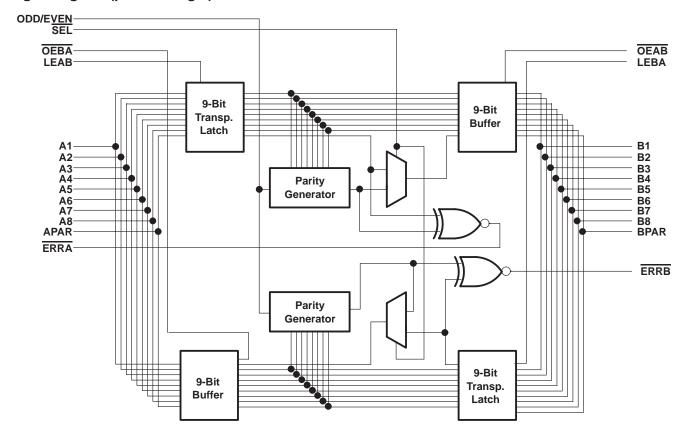
The SN74BCT899 is characterized for operation from 0°C to 70°C.

DW PACKAGE (TOP VIEW)

SN74BCT899 9-BIT LATCHABLE TRANSCEIVER WITH PARITY GENERATOR/CHECKER SCBS253 – JUNE 1992 – REVISED NOVEMBER 1993

FUNCTION TABLE

INPUTS					OPERATION OR FUNCTION			
OEAB	OEBA	SEL	LEAB	LEBA	OPERATION OR FUNCTION			
Н	Н	Х	Х	Х	Buses A and B are in the high-impedance state.			
Н	L	L	Х	Н	Generates parity from B1 – B8 based on ODD/EVEN. Generated parity → APAR. Generated parity checked against BPAR and output as ERRB.			
Н	L	L	Н	Н	Generates parity from B1 − B8 based on ODD/EVEN. Generated parity → APAR. Generated parity checked against BPAR and output as ERRB. Generated parity also fed back through the A latch for generate/check as ERRA.			
Н	L	L	Х	L	Generates parity from B-latch data based on ODD/ $\overline{\text{EVEN}}$. Generated parity \to APAR. Generated parity checked against latched BPAR and output as $\overline{\text{ERRB}}$.			
Н	L	Н	Х	Н	BPAR/B1 $-$ B8 \rightarrow APAR/A1 $-$ A8 feed-through mode. Generated parity checked against BPAR and output as $\overline{\text{ERRB}}$.			
Н	L	Н	Н	Н	BPAR/B1 $-$ B8 \rightarrow APAR/A1 $-$ A8 feed-through mode. Generated parity checked against BPAR and output as $\overline{\text{ERRB}}$. Generated parity also fed back through the A latch for generate/check as $\overline{\text{ERRA}}$.			
L	Н	L	Н	Χ	Generates parity from A1 – A8 based on ODD/EVEN. Generated parity → BPAR. Generated parity checked against APAR and output as ERRA.			
L	Н	L	Н	Н	Generates parity from A1 – A8 based on ODD/EVEN. Generated parity → BPAR. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.			
L	Н	L	L	Х	Generates parity from A-latch data based on ODD/ $\overline{\text{EVEN}}$. Generated parity \to BPAR. Generated parity checked against latched APAR and output as $\overline{\text{ERRA}}$.			
L	Н	Н	Н	Х	APAR/A1 – A8 \rightarrow BPAR/B1–B8 feed-through mode. Generated parity checked against APAR and output as $\overline{\text{ERRA}}$.			
L	Н	Н	Н	Х	APAR /A1 – A8 → BPAR/B1–B8 feed-through mode. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.			
L	L	Χ	Χ	Χ	Output to A bus and B bus			


PARITY FUNCTION TABLE

	OUTPUTS			
ODD/EVEN	Σ OF INPUTS A1 – A8 = H	APAR	BPAR‡	ERRA
L	0, 2, 4, 6, 8	L	L	Н
L	1, 3, 5, 7	L	Н	L
L	0, 2, 4, 6, 8	Н	L	L
L	1, 3, 5, 7	Н	Н	Н
Н	0, 2, 4, 6, 8	L	Н	L
Н	1, 3, 5, 7	L	L	Н
Н	0, 2, 4, 6, 8	Н	Н	Н
Н	1, 3, 5, 7	Н	L	L

[†] If LE = H, current A1-A8 and APAR data is used. If LE = L, latched A1–A8 and APAR data is used. ‡ This is the value of BPAR if SEL = L. If SEL = H, BPAR = APAR.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	. −0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	. −0.5 V to 7 V
Voltage range applied to any output in the disabled or power-off state, V _O	-0.5 V to 5.5 V
Voltage range applied to any output in the high state, V _O	-0.5 V to V _{CC}
Input clamp current, I _{IK} (V _I < 0)	–30 mA
Current into any output in the low state, I _O	128 mA
Operating free-air temperature range	0°C to 70°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN74BCT899 9-BIT LATCHABLE TRANSCEIVER WITH PARITY GENERATOR/CHECKER SCBS253 – JUNE 1992 – REVISED NOVEMBER 1993

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	V		
VIH	High-level input voltage		2			V	
VIL	Low-level input voltage				0.8	V	
VI	Input voltage				VCC	V	
la	High-level output current	A1-A8			-3	mA	
ЮН	nigh-level output current	B1-B8			-15] "	
la.	Lour lovel output ourrest	A1-A8			24	A	
IOL	Low-level output current	B1-B8	64		mA		
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10	ns/V	
TA	Operating free-air temperature				70	°C	

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
٧ıK			V _{CC} = 4.5 V,	I _I = -18 mA			-1.2	V
			$V_{CC} = 4.75 \text{ V},$	I _{OH} = -1 mA	2.7	3.4		
	A1-A8, APAR, ERRA, ERRB	V _{CC} = 4.5 V	I _{OH} = -1 mA	2.5	3.4			
			$I_{OH} = -3 \text{ mA}$	2.4	3.3			
Vон					2.7	3.4		V
	B1-B8, BPAR			$I_{OH} = -3 \text{ mA}$	2.4	3.4		
	BT-BO, BI AIX		V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$				
			$I_{OH} = -15 \text{ mA}$	2	3.1			
	A1-A8, APAR, ERRA, ERRB			$I_{OL} = 20 \text{ mA}$				V
VOL	AT-AO, AFAN, ENNA, ENNB		V _{CC} = 4.5 V	$I_{OL} = 24 \text{ mA}$		0.35	0.5	
VOL.	B1-B8, BPAR	VCC = 4.5 V	$I_{OL} = 48 \text{ mA}$				ľ	
	B1 50, 517(1)			$I_{OL} = 64 \text{ mA}$		0.42	0.55	
ll‡		_	$V_{CC} = 5.5 \text{ V},$	V _I = 5.5 V			100	μΑ
l _H ‡			$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20	μΑ
I _{IL} ‡			$V_{CC} = 5.5 \text{ V},$	V _I = 0.5 V			-20	μΑ
I _{OS} §	A1-A8, APAR, ERRA, ERRB	V _{CC} = 5.5 V,	V _O = 0	-60		-150	m _A	
1083	B1-B8, BPAR	B1-B8, BPAR			-100		-225	111/5
	Outputs high	A to B				0.5	2	mA
	Calpute riigh	B to A				0.5	2	
	Outputs low	A to B				43	69	
Icc	Caspate to H	B to A	V _{CC} = 5.5 V,	Outputs open		22	34	
100	Outputs disabled, ERR outputs low	A to B	\(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}\) \(\frac{1}2\) \(\frac{1}	Outputs open		6	10	
	Outputs disabled, ETTT outputs low	B to A]			6	10	
	Outputs disabled, ERR outputs high	A to B				0.5	2	
						0.5	2	
Ci		V _{CC} = 5 V,	V _I = 0.5 V		6.5		pF	
C _{io}	A ports		V _{CC} = 5 V,	V _O = 0.5 V		10.5		pF
Cio .	B ports] vcc = 5 v,			12.5		Ρ'	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

					= 5 V, 25°C	MIN	MAX	UNIT
				MIN	MAX			
t _W	Pulse duration			5		5		ns
t _{su}	Setup time before LE↓	Data hig	h or low	4.5		4.5		ns
t _h	Hold time after LE \downarrow	Data hig	h or low	1.5		1.5		ns

[‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. § Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
	(1141 01)	(0011 01)	MIN	TYP	MAX			
^t PLH	A or B	B or A	1.9	6	7.6	1.9	9.1	ns
t _{PHL}	AOIB	BOIA	1.8	5.2	6.8	1.8	8.1	115
^t PLH	A or B	BPAR or APAR	4.3	11	13	4.3	16.1	ns
^t PHL	AOIB	DEAR OF AFAR	4.5	10.7	12.7	4.5	15.3	115
^t PLH	APAR or BPAR	BPAR or APAR	2.2	5.2	6.7	2.2	8	ns
t _{PHL}	AFAR OI BFAR	DEAR OF AFAR	1.7	4.7	6.3	1.7	7.6	10
^t PLH	A, APAR, or	ERRA or ERRB	3.4	10.6	12.6	3.4	15.7	ns ns ns
t _{PHL}	B, BPAR	ERRAULERRE	3.6	10.5	12.5	3.6	15.3	
^t PLH	ODD/EVEN	ERRA or ERRB	4.6	8.8	10.5	4.6	12.8	
^t PHL	ODD/EVEN		4.1	8.4	10.2	4.1	12.8	
^t PLH	ODD/EVEN	BPAR or APAR	4.5	9	10.7	4.5	13.1	
^t PHL	ODD/EVEN		4.4	8.5	10.7	4.4	13.3	
^t PLH	SEL	BPAR or APAR	1.4	4.6	6.2	1.4	7.7	ns
^t PHL	SEL		1.6	4.4	5.9	1.6	7.1	
^t PLH	LEAB OR LEBA	B or A	2.6	7.6	9.3	2.6	10.9	
^t PHL	LEAD ON LEDA	BOIA	3.3	6.5	8.2	3.3	9.3	113
^t PLH	LEAB OR LEBA	BPAR or APAR	3	6.7	8.3	3	9.9	ns
^t PHL	LEAD ON LEDA	(parity feed-through)	3	6.1	7.7	3	8.7	113
^t PLH	LEAB OR LEBA	BPAR or APAR	5.2	10.2	12.1	5.2	14.8	ns
^t PHL	LEAD ON LEDA	(parity generated)	5.1	8.9	10.7	5.1	12.5	113
^t PLH	LEAB OR LEBA	ERRB or ERRA	5.3	10.3	12.3	5.3	14.9	ns
^t PHL	LEAD OR LEDA	ERRO OI ERRA	5	9.2	11	5	12.9	113
^t PZH	OEAB or OEBA	B or A	1.8	5.6	7.2	1.8	9	ns
^t PZL	OLAD UI OEDA	D 01 A	2.1	10.5	12.2	2.1	13.9	113
^t PHZ	OEAB or OEBA	B or A	2.9	6.4	8.1	2.9	9.8	ns
^t PLZ	OLAD OF OLDA	D 01 A	2.1	5.5	7.1	2.1	8.1	113

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated