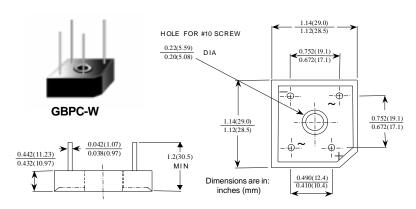


Discrete POWER & Signal Technologies

GBPC 12, 15, 25, 35 SERIES

Features

- Integrally molded heatsink provided very low thermal resistance for maximum heat dissipation.
- Surge overload rartings from 300 amperes to 400 amperes.
- Isolated voltage from case to lead over 2500 volts.



Suffix "W"

Wire Lead Structure

Suffix "M"

Terminal Location Face to Face

12, 15, 25, 35 Ampere Glass Passivated Bridge Rectifiers

Absolute Maximum Ratings* T_A

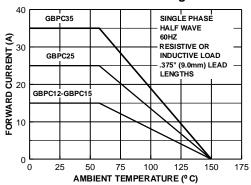
 $T_A = 25$ °C unless otherwise noted

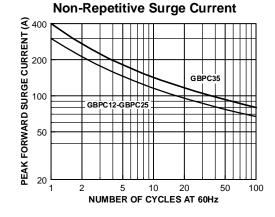
Symbol	Parameter	Value	Units	
lo	Averag e Rectified Curr ent GBPC12	12	Α	
	$@T_A = 55^{\circ}C$ GBPCI5	15	Α	
	GBPC25	25	Α	
	GBPC35	35	Α	
i _{f(surge)}	Peak F or ward Surge C urrent			
(3-)	8.3 ms single half- sine-wave GBPC12, 15, 25	300	Α	
	Superimposed on rate d load (JEDEC method GBPC35	400	Α	
P _D	Total D evice Dissipati on	83.3	W	
	Derate above 25C	666	mW/°C	
$R_{\theta JL}$	Ther mal Resistance, Junction to Lead	1.5	°C/W	
T _{stg}	Storag e Temperature Range	-55 to +150	°C	
TJ	Operati ng Junction Temperature	-55 to +1	50 °C	

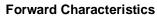
^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

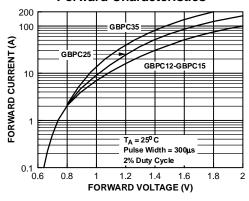
Glass Passivated Bridge Rectifiers

(continued)

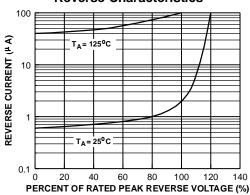

Electrical Characteristics


T_A = 25°C unless otherwise noted


Parameter		Device						Units
	005	01	02	04	06	08	10	
Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
Maximum RMS Bridge Input Voltage	35	70	140	280	420	560	700	V
DC Reverse Voltage (Rated V _R)	50	100	200	400	600	800	1000	V
Maximum Reverse Leakage, total bridge @ rated V_R $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$				5.0 500				μA μA
Maximum Forward Voltage Drop, per bridge @ 6.0 A GBPC12 @ 7.5 A GBPC15 @ 12.5 A GBPC25 @ 17.5 A GBPC35		1.1						V
I^2 t rating for fusing t < 8.3 ms GBPC12,15,25 GBPC35		375 660						A ² Sec A ² Sec
Typical Junction Capacitance, per let $V_R = 4.0V$, $GBPC12,15,25$ $f = 1.0 \ MHz$ $GBPC35$		180 200					pF pF	


Typical Characteristics

Forward Current Derating Curve



Reverse Characteristics

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM COOIFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

FACT Quiet Series $^{\text{TM}}$ Quiet Series $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3 SuperSOT $^{\text{TM}}$ -6 GTO $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -8 HiSeC $^{\text{TM}}$ TinyLogic $^{\text{TM}}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.