NEGATIVE FIXED VOLTAGE REGULATOR ### **DESCRIPTION** The SG7900A/SG7900 series of negative regulators offer self-contained, fixed-voltage capability with up to 1.5A of load current. With a variety of output voltages and four package options this regulator series is an optimum complement to the SG7800A/SG7800, SG140 line of three terminal regulators. These units feature a unique band gap reference which allows the SG7900A series to be specified with an output voltage tolerance of $\pm 1.5\%$. The SG7900A versions also offer much improved line regulation characteristics. All protective features of thermal shutdown, current limiting, and safe-area control have been designed into these units and since these regulators require only a single output capacitor (SG7900 series) or a capacitor and 5mA minimum load (SG120 series) for satisfactory performance, ease of application is assured. Although designed as fixed-voltage regulators, the output voltage can be increased through the use of a simple voltage divider. The low quiescent drain current of the device insures good regulation when this method is used, especially for the SG120 series. These devices are available in hermetically sealed TO-257, TO-3, TO-39 and LCC package. #### **FEATURES** - Output voltage set internally to ±1.5% on SG7900A - Output current to 1.5A - Excellent line and load regulation - Foldback current limiting - Thermal overload protection - Voltages available: -5V, -12V, -15V - Contact factory for other voltage options - Available in surface mount package # HIGH RELIABILITY FEATURES - SG7900A/SG7900 - ♦ Available to MIL-STD 883 - MIL-M38510/11501BXA JAN7905T - ♦ MIL-M38510/11505BYA JAN7905K - ◆ MIL-M38510/11502BXA JAN7912T - ♦ MIL-M38510/11506BYA JAN7912K - ♦ MIL-M38510/11503BXA JAN7915T - ♦ MIL-M38510/11507BYA JAN7915K - ♦ LMI level "S" processing available # **SCHEMATIC DIAGRAM** ### **ABSOLUTE MAXIMUM RATINGS (Note 1)** | Device
Output Voltage | Input Voltage | Input Voltage Differential (Output shorted to ground) | |--------------------------|---------------|---| | -5V | -35V | 35V | | -12V | -35V | 35V | | -15V | -40V | 35V | Note 1. Values beyond which damage may occur. #### THERMAL DATA | K Package: | |---| | Thermal Resistance-Junction to Case, θ_{JC} 3.0°C/W | | Thermal Resistance-Junction to Ambient, θ_{JA} | | T Package: | | Thermal Resistance-Junction to Case, θ_{JC} | | Thermal Resistance-Junction to Ambient, θ_{14} | | IG Package: | | Thermal Resistance-Junction to Case, θ_{IC} 3.5°C/W | | Thermal Resistance-Junction to Ambient, θ_{14} | | L Package: | | Thermal Resistance-Junction to Case, θ _{JC} | | Thermal Resistance-Junction to Ambient, θ_{JA} 120°C/W | | | Note A. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. Note B. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow. ### **RECOMMENDED OPERATING CONDITIONS** (Note 2) Operating Junction Temperature Range: SG7900A/7900 -55°C to 150°C Note 2. Range over which the device is functional. ### **CHARACTERISTIC CURVES** FIGURE 1. MAXIMUM AVERAGE POWER DISSIPATION FIGURE 2. QUIESCENT CURRENT VS. LOAD FIGURE 3. TEMPERATURE COEFFICIENT # **CHARACTERISTIC CURVES** (continued) SHORTCIRCUIT CURRENT VS. V_{IN} FIGURE 5. QUIESCENT CURRENT VS. $V_{\rm IN}$ FIGURE 6. SHORT CIRCUIT CURRENT VS. V_{IN} FIGURE 7. DROPOUT CHARACTERISTICS FIGURE 8. RIPPLE REJECTION VS. FREQUENCY ### **APPLICATIONS** FIGURE 9 - FIXED OUTPUT REGULATOR FIGURE 10 - CIRCUIT FOR INCREASING OUTPUT VOLTAGE $NOTE: 1. \ C1 is required only if regulator is separated from rectifier filter.$ - Both C1 and C2 should be low E.S.R. types such as solid tantalum. If aluminum electrolytics are used, at least 10 times values shown should be selected. - If large output capacities are used, the regulators must be protected from momentary input shorts. A high current diode NOTE: C3 optional for improved transient response and ripple rejec $$V_{OUT} = V (REGULATOR) \frac{R_1 + R_2}{R_1}$$ $R_2 = \frac{V(REGULATOR)}{15 \text{mA}}$ # -5.0V NEGATIVE REGULATOR ### **ELECTRICAL SPECIFICATIONS** (Note 1) (Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7905A/SG7905 with -55°C \leq T $_{A}$ \leq 150°C, V $_{IN}$ = -10V, I $_{O}$ = 500mA for the K and IG -Power Packages-, I $_{O}$ = 100mA for the T and L packages, C $_{IN}$ = 2 μ F, and C $_{OUT}$ = 1.0 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.) ### SG7905A/SG7905 | Parameter | Test Conditions | SG7905A | | | SG7905 | | | Units | |----------------------------|---|---------|----------------|-------|--------|-------|-------|--------| | Farameter | rest conditions | | Min. Typ. Max. | | Min. | Тур. | Max. | Ullita | | Output Voltage | T ₁ = 25°C | | -5.00 | -5.08 | -4.8 | -5.0 | -5.2 | V | | Line Regulation (Note 1) | $V_{IN} = -7.5V \text{ to } -25V, T_{I} = 25^{\circ}C$ | | 5 | 25 | | 3 | 50 | mV | | | $V_{IN}^{"}$ = -8V to -12V, $T_{I} = 25^{\circ}$ C | | 3 | 12 | | 1 | 25 | mV | | Load Regulation (Note 1) | Power Pkgs: $I_0 = 5$ mA to 1.5A, $T_1 = 25$ °C | | 15 | 75 | | 15 | 100 | mV | | | $I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25 ^{\circ}\text{C}$ | | 15 | 25 | | 15 | 25 | mV | | | T - Pkg: $I_0 = 5 \text{mA}$ to 500mA, $T_1 = 25 \text{°C}$ | | 5 | 30 | | 5 | 100 | mV | | Total Output Voltage | $V_{IN} = -8V \text{ to } -20V$ | | | | | | | | | Tolerance | Power Pkgs: $I_0 = 5$ mA to 1.0A, $P \le 20$ W | -4.85 | -5.00 | -5.15 | -4.70 | -5.00 | -5.30 | V | | | T - Pkg: $I_0 = 5$ mA to 500mA, P ≤ 2 W | -4.85 | -5.00 | -5.15 | -4.70 | -5.00 | -5.30 | V | | Quiescent Current | Over Temperature Range | | | 2.5 | | | 2.5 | mΑ | | | T ₁ = 25°C | | | 2.0 | | | 2.0 | mΑ | | Quiescent Current Change | with Line: $V_{IN} = -8V$ to $-25V$ | | | 1.3 | | | 1.3 | mΑ | | | with Load: I_0 = 5mA to 1.0A (Power Packages) | | | 0.5 | | | 0.5 | mΑ | | | $I_0 = 5 \text{mA to } 500 \text{mA (T)}$ | | | 0.5 | | | 0.5 | mΑ | | Dropout Voltage | $\Delta V_{0} = 100 \text{mV}, T_{1} = 25 ^{\circ}\text{C}$ | | | | | | | | | | Power Pkgs: I ₀ = 1.0A, T - Pkg: I ₀ = 500mA | | 1.1 | 2.3 | | 1.1 | 2.3 | V | | Peak Output Current | Power Pkgs: T _j = 25°C | | | 3.3 | 1.5 | | 3.3 | Α | | | T - Pkg: T = 25°C | | | 1.4 | 0.5 | | 1.4 | Α | | Short Circuit Current | Power Pkgs: $V_{IN} = -35V$, $T_{J} = 25^{\circ}C$ | | | 1.2 | | | 1.2 | Α | | | T - Pkg: $V_{IN} = -35V$, $T_{J} = 25^{\circ}C$ | | | 0.6 | | | 0.6 | Α | | Ripple Rejection | $\Delta V_{IN} = 10 \text{ V}, \text{ f} = 120 \text{ Hz}, \text{ T}_{I} = 25 \text{ °C}$ | 54 | | | 54 | | | dB | | Output Noise Voltage (rms) | f = 10Hz to 100KHz (Note 2) | | 25 | 80 | | 25 | 80 | μV/V | | Long Term Stability | 1000hrs. at T _J = 125°C | | 20 | | | 20 | | mV | | Thermal Shutdown | $I_0 = 5mA$ | | 175 | | | 175 | | °C | Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing. 2. This test is guaranteed but is not tested in production. # -12V NEGATIVE REGULATOR # **ELECTRICAL SPECIFICATIONS** (Note 1) (Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7912A/SG7912 with -55°C ≤ T_x ≤ 150°C, V_{IN} = -19V, I_{O} = 500mA for the K and IG -Power Packages-, I_{O} = 100mA for the T and L packages, C_{IN} = 2 μ F, and C_{OUT} = 1.0 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.) ### SG7912A/SG7912 | Parameter | Test Conditions | | SG7912A | | | SG7912 | | | |----------------------------|--|-------|---------|-------|-------|--------|-------|-------| | Parameter | | | | | Min. | Тур. | Max. | Units | | Output Voltage | T ₁ = 25°C | | -12.0 | -12.2 | -11.5 | -12.0 | -12.5 | V | | Line Regulation (Note 1) | $V_{IN} = -14.5 \text{V to } -30 \text{V}, T_{I} = 25 ^{\circ}\text{C}$ | | 4 | 60 | | 10 | 120 | mV | | | $V_{IN}^{"}$ = -16V to -22V, $T_{IJ} = 25^{\circ}$ C | | 3 | 30 | | 3 | 60 | mV | | Load Regulation (Note 1) | Power Pkgs: $I_0 = 5\text{mA}$ to 1.5A, $T_1 = 25^{\circ}\text{C}$ | | 20 | 90 | | 12 | 120 | mV | | | $I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25 ^{\circ}\text{C}$ | | 10 | 40 | | 4 | 60 | mV | | | T - Pkg: $I_0 = 5 \text{mA}$ to 500mA, $T_1 = 25 \text{°C}$ | | 10 | 40 | | 10 | 240 | mV | | Total Output Voltage | $V_{IN} = -14.5V \text{ to } -27V$ | | | | | | | | | Tolerance | Power Pkgs: $I_0 = 5$ mA to 1.0A, $P \le 20$ W | -11.7 | -12.0 | -12.3 | -11.4 | -12.0 | -12.6 | V | | | T - Pkg: $I_0 = 5$ mA to 500mA, P \leq 2W | -11.7 | -12.0 | -12.3 | -11.4 | -12.0 | -12.6 | V | | Quiescent Current | Over Temperature Range | | | 4 | | | 4 | mΑ | | | T ₁ = 25°C | | | 3 | | | 3 | mΑ | | Quiescent Current Change | with Line: $V_{IN} = -14.5V$ to $-30V$ | | | 1.0 | | | 1.0 | mΑ | | | with Load: I_0 = 5mA to 1.0A (Power Packages) | | | 0.5 | | | 0.5 | mA | | | $I_0 = 5 \text{mA to } 500 \text{mA (T)}$ | | | 0.5 | | | 0.5 | mΑ | | Dropout Voltage | $\Delta V_{0} = 100 \text{mV}, T_{1} = 25 ^{\circ}\text{C}$ | | | | | | | | | | Power Pkgs: $I_0 = 1.0A$, T - Pkg: $I_0 = 500$ mA | | 1.1 | 2.3 | | 1.1 | 2.3 | V | | Peak Output Current | Power Pkgs: T = 25°C | | | 3.3 | 1.5 | | 3.3 | Α | | | T - Pkg: T = 25°C | | | 1.4 | 0.5 | | 1.4 | Α | | Short Circuit Current | Power Pkgs: V _{IN} = -35V, T _I = 25°C 1.2 | | | | 0.2 | Α | | | | | T - Pkg: $V_{IN} = -35V$, $T_{J} = 25^{\circ}C$ | | | 0.6 | | | 0.6 | Α | | Ripple Rejection | $\Delta V_{IN} = 10 \text{ V}, \text{ f} = 120 \text{Hz}, \text{ T}_{J} = 25 ^{\circ}\text{C}$ | | | | 54 | | | dB | | Output Noise Voltage (rms) | f = 10Hz to 100KHz (Note 2) | | 25 | 80 | | 25 | 80 | μV/V | | Long Term Stability | 1000hrs. at T _J = 125°C | | 60 | | | 60 | | mV | | Thermal Shutdown | $I_0 = 5mA$ | | 175 | | | 175 | | °C | Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing. 2. This test is guaranteed but is not tested in production. # -15V NEGATIVE REGULATOR # **ELECTRICAL SPECIFICATIONS** (Note 1) (Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7915A/SG7915 with -55°C \leq T $_{A}$ \leq 150°C, V $_{IN}$ = -23V, I $_{O}$ = 500mA for the K and IG -Power Packages-, I $_{O}$ = 100mA for the T and L packages, C $_{IN}$ = 2 μ F, and C $_{OUT}$ = 1.0 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.) ### SG7915A/SG7915 | Parameter | Test Conditions | | SG7915A | | | SG7915 | | | |----------------------------|--|-------|---------|-------|-------------------|--------|--------|-------| | Parameter | | | Тур. | Max. | ax. Min. Typ. Max | | Max. | Units | | Output Voltage | T ₁ = 25°C | | -15.0 | -15.2 | -14.4 | -15.0 | -15.6 | V | | Line Regulation (Note 1) | $V_{IN} = -17.5 \text{V to } -30 \text{V}, T_{I} = 25 ^{\circ}\text{C}$ | | 5 | 75 | | 11 | 150 | mV | | | $V_{IN}^{"}$ = -20V to -25V, $T_{IJ} = 25^{\circ}$ C | | 3 | 40 | | 3 | 75 | mV | | Load Regulation (Note 1) | Power Pkgs: $I_0 = 5\text{mA}$ to 1.5A, $T_1 = 25^{\circ}\text{C}$ | | 30 | 100 | | 12 | 150 | mV | | | $I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25 ^{\circ}\text{C}$ | | 4 | 50 | | 4 | 75 | mV | | | T - Pkg: $I_0 = 5$ mA to 500mA, $T_1 = 25$ °C | | 10 | 50 | | 10 | 240 | mV | | Total Output Voltage | $V_{IN} = -18.5 \text{V to } -30 \text{V}$ | | | | | | | | | Tolerance | Power Pkgs: $I_0 = 5$ mA to 1.0A, $P \le 20$ W | -14.6 | -15.0 | -15.4 | -14.25 | -15.00 | -15.75 | V | | | T - Pkg: $I_0 = 5$ mA to 500mA, P \leq 2W | -14.6 | -15.0 | -15.4 | -14.25 | -15.00 | -15.75 | V | | Quiescent Current | Over Temperature Range | | | 4 | | | 4 | mΑ | | | T ₁ = 25°C | | | 3 | | | 3 | mΑ | | Quiescent Current Change | with Line: $V_{IN} = -18.5V$ to $-30V$ | | | 1.0 | | | 1.0 | mΑ | | | with Load: I_0 = 5mA to 1.0A (Power Packages) | | | 0.5 | | | 0.5 | mΑ | | | $I_0 = 5 \text{mA to } 500 \text{mA (T)}$ | | | 0.5 | | | 0.5 | mΑ | | Dropout Voltage | $\Delta V_{0} = 100 \text{mV}, T_{1} = 25 ^{\circ}\text{C}$ | | | | | | | | | | Power Pkgs: $I_0 = 1.0A$, T - Pkg: $I_0 = 500$ mA | | 1.1 | 2.3 | | 1.1 | 2.3 | V | | Peak Output Current | Power Pkgs: T = 25°C | | | 3.3 | 1.5 | | 3.3 | Α | | | T - Pkg: T = 25°C | | | 1.4 | 0.5 | | 1.4 | Α | | Short Circuit Current | Power Pkgs: $V_{IN} = -35V$, $T_{J} = 25^{\circ}C$ | | | 1.2 | | | 1.2 | Α | | | T - Pkg: $V_{IN} = -35V$, $T_{J} = 25^{\circ}C$ | | | 0.6 | | | 0.6 | Α | | Ripple Rejection | $\Delta V_{IN} = 10 \text{ V}, f = 120 \text{ Hz}, T_{IJ} = 25 \text{ °C}$ | 54 | | | 54 | | | dB | | Output Noise Voltage (rms) | f = 10Hz to 100KHz (Note 2) | | 25 | 80 | | 25 | 80 | μV/V | | Long Term Stability | 1000hrs. at T _J = 125°C | | 60 | | | 60 | | mV | | Thermal Shutdown | $I_0 = 5mA$ | | 175 | | | 175 | | °C | Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing. 2. This test is guaranteed but is not tested in production. # CONNECTION DIAGRAMS & ORDERING INFORMATION (See Notes Below) | Package | Part No. | Ambient
Temperature Range | Connection Diagram | |---|--|---|---| | 3-TERMINAL TO-3
METAL CAN
K-PACKAGE | SG79XXAK/883B
SG7905AK/DESC
SG7912AK/DESC
SG7915AK/DESC
SG79XXAK
SG79XXK/883B
JAN7905K
JAN7912K
JAN7915K
SG79XXK
SG79XXK | -55°C to 125°C | GROUND 1 2 CASE IS V _{IN} | | 3-PIN TO-39 METAL CAN
T-PACKAGE | SG79XXAT/883B
SG7905AT/DESC
SG7912AT/DESC
SG7915AT/DESC
SG79XXAT
SG79XXT/883B
JAN7905T
JAN7912T
JAN7915T
SG79XXT | -55°C to 125°C
-55°C 125°C | GROUND VOUT OUT CASE IS VIN | | 3-PIN HERMETIC TO-257
IG-PACKAGE (Isolated) | SG79XXAIG/883B
SG7905AIG/DESC
SG7912AIG/DESC
SG7915AIG/DESC
SG79XXAIG
SG79XXIG/883B
SG79XXIG | -55°C to 125°C
-55°C to 125°C | V _{OUT} V _N GROUND | | 20-PIN CERAMIC
LEADLESS CHIP CARRIER
L- PACKAGE | SG79XXL/883B
SG79XXL
SG7905AL/DESC
SG7912AL/DESC
SG7915AL/DESC | -55°C to 125°C
-55°C to 125°C
-55°C to 125°C
-55°C to 125°C
-55°C to 125°C | (See Notes 5 & 6) 1. N.C. 2. V _{IN} 3. N.C. 4. V _O 5. V _O 6. N.C. 7. V _O SENSE 7 8. N.C. 9. N.C. 10. N.C. 9 10 11 12 13 11. N.C. 12. N.C. 12. N.C. 13. N.C. 14. N.C. 17 15. GND 16 16. N.C. 17 17. GND 18. N.C. 19. N.C. 20. V _{IN} | Note 1. Contact factory for JAN and DESC product availability. 2. All parts are viewed from the top. 3. "XX" to be replaced by output voltage of specific fixed regulator. 4. Some products will be available in hermetic flat pack (F). Consult factory for price and availability. 5. Both inputs and outputs must be externally connected together at the device terminals. 6. For normal operation, the $\rm V_{\rm o}$ SENSE pin must be externally connected to the load.