SC-70 100mA CMOS LDO Regulator #### **FEATURES** - Tiny SC-70 Package - Industry Standard 3 Pin and 5 Pin Options - Thermally Enhanced 4 Pin SC-70 Option - Guaranteed 100 mA Output - Fixed Outputs: 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 5V - 2.5% Output Voltage Accuracy - Low Dropout Voltage, 250 mV at 100mA - Low Quiescent Current, 65 μA - Low Ground Current, 135 μA @ I_I = 100 mA - Short-Circuit Current Limit - Thermal Shutdown - Good Load and Line Regulation - Fast Transient Response: T_{ON}/T_{OFF}=80µs - Low Temperature Coefficient - Stable with No Load using 0.47 μF and 1μF Ceramic - 100mA Replacement for 80mA MIC5213 #### **APPLICATIONS** - Digital Cordless Phones - Cellular Phones - PDAs - Digital Still Cameras - MP3 Players - Battery-Powered Equipment - Medical Devices ### **DESCRIPTION** The SP6213 is a 100mA CMOS linear voltage regulator offered in an SC-70 package that reduces board space requirements by 50% over a SOT-23 package. The SP6213 features low dropout voltage (250mV at 100mA), low ground current (135 μ A at full load) and low, 65 μ A quiescent current. Designed specifically for hand-held, battery powered devices, the device includes an enable/shutdown pin. Regulator ground current increases only slightly in dropout to extend battery life. The SP6213 is offered in industry standard 3-pin and 5-pin SC-70 packages and a thermally enhanced 4-pin SC-70. SP6213 is available in 2.7V, 2.85V, 3.0V, 3.3V and 5.0V fixed output voltages. Figure 1. SP6213 Block Diagram ## **ABSOLUTE MAXIMUM RATINGS**, Note 1 These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. | Supply Input Voltage (V _{IN}) | 2V to 8V | |---|------------------------------| | Output Voltage (VOLT) | 0.6 to (V _{IN} +1V) | | Enable Input Voltage (V _{FN}) | | | Power Dissipation (P _D) | | | Lead Temperature (soldering | 5s)260°C | | Storage Temperature | 65°C to +150°C | # **OPERATING RATINGS, Note 2** | Input Voltage (V _{IN}) | +2.5V to +7\ | |---|----------------| | Enable Input Voltage (V _{EN}) | 0V to 10\ | | Junction Temperature (T) | 40°C to +125°C | | Thermal Resistance, | | | SC-70-5 (θ _{1Δ}) | 330°C/W | | SC-70-4 (θ _{.IA}) | 330°C/W | | SC-70-3 (θ _{IA}) | | | | | #### **SPECIFICATIONS** $I_{\rm init} = V_{\rm out} + 0.5 \text{V}$, $I_{\rm i} = 100 \mu\text{A}$, $C_{\rm init} = 1 \mu\text{F}$, $C_{\rm out} = 1 \mu\text{F}$, $C_{\rm init} = 25^{\circ}\text{C}$, **bold** values indicate $-40^{\circ}\text{C} \le T_{\rm i} \le 125^{\circ}\text{C}$ unless otherwise noted. | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |---|--|-------------------|------------|-----------------|---------| | Output Voltage Accuracy, (V _{OUT}) | Variation from specified V _{OUT} | -2.5
-4 | | 2.5
4 | % | | Output Voltage Temperature Coefficient, Note 4, $(\Delta V_{OUT}/\Delta T)$ | | | 60 | | ppm/° C | | Line Regulation, ($\Delta V_{\rm OUT}/V_{\rm IN}$) | $V_{IN} = (V_{OUT} + 1V) \text{ to } 7V$ | | 0.05 | 0.2 | %/V | | Load Regulation, Note 5, (ΔV _{OUT}) | I _L = 0.1mA to 100mA | | 0.2 | 0.4 | % | | Dropout Voltage, Note 6, (V _{IN} - V _{OUT}) | I _L = 100μA | | 0.25 | 4 | mV | | | I _L = 50mA | | 130 | 260 | mV | | | I _L = 100mA | | 250 | 500 | mV | | Quiescent Current, (I _{GND}) | $V_{EN} \le 0.4 V \text{ (Shutdown)}$
$V_{EN} \ge 2.0 V \text{ (Operating)}, I_L = 0 \mu A$ | | 0.01
65 | 1
125 | μА | | Ground Pin Current, Note 7, (I _{GND}) | $V_{EN} \ge 2.0V, I_{L} = 100\mu A$ | | 65 | 125 | μА | | | V _{EN} ≥ 2.0V, I _L = 50mA | | 100 | 175 | μА | | | V _{EN} ≥ 2.0V, I _L = 100mA | | 135 | 250 | μА | | Power Supply Rejection Ratio, (PSRR) | Frequency = 100Hz, I _L = 10mA
Frequency = 400Hz, I _L = 10mA | | 66
40 | | dB | | Current Limit, (I _{CL}) | | 120 | 190 | 350 | mA | | Thermal Limit | Turns On
Turns Off | | 168
153 | | ° C | | Thermal Regulation, $(\Delta V_{OUT}/\Delta P_D)$ | Note 8, | | 0.05 | | %/W | | Output Noise (e _{NO}) | $I_L = 50 \text{mA}, C_L = 1 \mu \text{F}, 10 \text{Hz} \text{ to } 100 \text{kHz}$ | | 250 | | μVrms | #### **SPECIFICATIONS** $V_{_{IN}} = V_{_{OUT}} + 0.5V, \ I_{_{L}} = 100\mu\text{A}, \ C_{_{IN}} = 1.0\mu\text{F}, \ C_{_{OUT}} = 1.0\mu\text{F}, \ T_{_{J}} = 25^{\circ}\text{C} \ , \ \textbf{bold} \ values \ indicate} \ \ \textbf{-40^{\circ}C} \leq T_{_{J}} \leq 125^{\circ}\text{C} \ unless \ otherwise \ noted.$ | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |---|--|-----|----------|-----------|-------| | ENABLE INPUT | | | _ | - | | | Enable Input Logic-Low Voltage, (V _{IL}) | Regulator Shutdown | | 0.9 | 0.4 | V | | Enable Input Logic-High Voltage, (V _{IH}) | Regulator Enabled | 1.6 | 0.9 | | V | | Enable Input Current, (I_{IL}) , (I_{IH}) | $V_{IL} \leq 0.4V$ | | 0.01 | 1 | μΑ | | | V _{IH} ≥ 2.0V | | 0.01 | 1 | μΑ | | Turn on Time (T _{ON}) | I _{OUT} =50mA | | 80 | 165 | μs | | Turn off Time (T _{OFN}) | Ι _{ουτ} =100μΑ
Ι _{ουτ} =100mA | | 80
30 | 175
35 | μs | - Note 1. Exceeding the absolute maximum rating may damage the device. - Note 2. The device is not guaranteed to function outside its operating rating. - Note 3. The maximum allowable power dissipation at any T_A (ambient temperature) is $P_{D \text{ (MAX)}} = (T_{J \text{ (MAX)}} T_A) / q_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The Θ_{JA} of the SP6213 (SC-70-5) is 450°C/W mounted on a PC board with minimum copper area (see "Thermal Considerations" section for further details). - Note 4. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range. - Note 5. Load Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range. Changes in output voltage due to heating effects are covered by the thermal regulation specification. - Note 6. Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. - Note 7. Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground pin current. - Note 8. Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 100mA load pulse at $V_{IN} = 7V$ for t = 10ms. - Note 9. Devices are ESD sensitive. Handling precautions are recommended. | PI | N NUMBE | R | PIN NAME | DESCRIPTION (FUNCTION) | |-------|---------|-------|------------------|---------------------------------------| | 3 PIN | 4 PIN | 5 PIN | | | | 1 | 1 | 3 | GND | Ground Connection | | 2 | 4 | 4 | V _{out} | Regulator Output | | 3 | 3 | 5 | V _{IN} | Supply Input | | | 2 | 1 | EN | Enable / Shutdown (Logic high=enable; | | | | | | logic low = shutdown) | | | | 2 | NC | No Connection | #### THEORY OF OPERATION #### **General Overview** # **Enable/Shutdown Operation** The SP6213 is turned off by pulling the EN pin low and turned on by pulling it high. If this enable/shutdown feature is not required, EN should be tied to $V_{\rm IN}$ to keep the regulator output on at all times. #### **Input Capacitor** A small capacitor of about $1\mu F$ is required from V_{IN} to GND if e.g. a battery is used as the input. Any good quality ceramic or tantalum capacitor may be used at the input. #### **Output Capacitor** An output capacitor is required between V_{OUT} and GND to prevent oscillation. The minimum size of the output capacitor is a 0.47 μF ceramic. The given datasheet values relate to an IC with a ceramic output capacitor of $1\mu F$. Larger values make the IC more stable which means an improvement of the regulator's transient response. For a lower output current, the output capacitance can be chosen smaller in order to have the same output stability. # No Load Stability The SP6213 will remain stable and in regulation with no external load (other than the internal voltage driver) unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications. #### Thermal Considerations The SP6213 is designed to provide 100 mA of continuous current in a very tiny package. Maximum power dissipation can be calculated based on the output current and the voltage drop across the part. To determine the maximum power dissipation of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation: $$P_{D} = (T_{J(max)} - T_{A}) / \Theta_{JA}$$ $T_{_{J(max)}}$ is the maximum junction temperature of the die and is 125°C. $T_{_A}$ is the ambient operating. $\Theta_{_{JA}}$ is the junction-to-ambient thermal resistance for the regulator and is layout dependent. ### **THEORY OF OPERATION: CONTINUED** The actual power dissipation of the regulator circuit can be determined using one simple equation: $$P_{D} = (V_{IN} - V_{OUT}) * I_{OUT} + V_{IN} * I_{GND}$$ Substituting $P_{D(max)}$ for P_D and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit. For example, if we are operating the SP6213 at 3.0V output at room temperature, with a minimum footprint layout, we can determine the maximum input voltage for a set output current. $$P_{D(max)} = [(125^{\circ}C - 25^{\circ}C) / (450^{\circ}C/W)]$$ = 222 mW. To prevent the device from entering thermal shutdown, maximum power dissipation can not be exceeded. Using the output voltage of 3.0V and an output current of 100 mA, the maximum input voltage can be determined. Ground pin current can be taken from the electrical spec'stable (0.135 mA at 100 mA). The maximum input voltage is determined as follows: $$222mW = (V_{IN} - 3.0V)*100mA + V_{IN}*0.135mA$$ After calculations, we find that the maximum input voltage of a 3.0V application at 100mA of output current in an SC-70-5 package is 5.2V. # 3 Pin SC-70 Package Drawing ### NOTE: - 1. All dimensions are in millimeters - 2. Dimensions are inclusive of plating - 3. Dimensions are exclusive - of mold flash & metal burr 4. All specifications comply to EIAJ SC70 | SYMBOL | MIN | MAX | |--------|------|------| | е | 0.65 | BSC | | D | 1.80 | 2.20 | | b | 0.25 | 0.40 | | Е | 1.15 | 1.35 | | HE | 1.80 | 2.40 | | Q1 | 0.10 | 0.40 | | A2 | 0.80 | 1.00 | | A1 | 0.00 | 0.10 | | Α | 0.80 | 1.10 | | С | 0.10 | 0.18 | | L | 0.10 | 0.30 | # 4 Pin SC-70 Package Drawing - NOTE: 1. All dimensions are in millimeters - Dimensions are inclusive of plating - 3. Dimensions are exclusive of mold flash & metal burr - All specifications comply to EIAJ SC70 | SYMBOL | MIN | MAX | |--------|-------|-------| | е | 0.65 | BSC | | e1 | 0.50 | BSC | | D | 1.80 | 2.20 | | b | 0.15 | 0.30 | | b1 | 0.575 | 0.700 | | E | 1.15 | 1.35 | | HE | 1.80 | 2.40 | | Q1 | 0.10 | 0.40 | | A2 | 0.80 | 1.00 | | A1 | 0.00 | 0.10 | | Α | 0.80 | 1.10 | | С | 0.10 | 0.18 | | L | 0.10 | 0.30 | # 5 Pin SC-70 Package Drawing #### NOTE: - All dimensions are in millimeters - Dimensions are inclusive of plating - 3. Dimensions are exclusive of mold flash & metal burr - 4. All specifications comply to EIAJ SC70 | SYMBOL | MIN | MAX | |--------|------|------| | е | 0.65 | BSC | | D | 1.80 | 2.20 | | b | 0.15 | 0.30 | | E | 1.15 | 1.35 | | HE | 1.80 | 2.40 | | Q1 | 0.10 | 0.40 | | A2 | 0.80 | 1.00 | | A1 | 0.00 | 0.10 | | Α | 0.80 | 1.10 | | С | 0.10 | 0.18 | | L | 0.10 | 0.30 | | | Model | TOP MARK | Temperature Range | Package Type | |---|----------------------------|------------|-------------------|---------------------| | | SP6213EC3-2.5 | T00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC3-2.7 | S00 | -40°C to +125°C | Tape & Reel SC-70-3 | | ı | SP6213EC3-2.85 | R00 | -40°C to +125°C | Tape & Reel SC-70-3 | | ı | SP6213EC3-3.0 | N00 | -40°C to +125°C | Tape & Reel SC-70-3 | | ı | SP6213EC3-3.3 | Q00 | -40°C to +125°C | Tape & Reel SC-70-3 | | | SP6213EC3-5.0 | P00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC4-2.5 | MOO | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC4-2.7 | L00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC4-2.85 | K00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC4-3.0 | G00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC4-3.3 | J00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC4-5.0 | H00 | -40°C to +125°C | Tape & Reel SC-70- | | I | SP6213EC5-2.5 | F00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC5-2.7 | E00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC5-2.85 | D00 | -40°C to +125°C | Tape & Reel SC-70- | | l | SP6213EC5-3.0 | A00 | -40°C to +125°C | Tape & Reel SC-70- | | ı | SP6213EC5-3.3 | C00 | -40°C to +125°C | Tape & Reel SC-70- | | | SP6213EC5-5.0 | B00 | -40°C to +125°C | Tape & Reel SC-70- | Sipex | | | | | | Sipex
Signal processing | EXCELLENCE | | | | | Sipex SIGNAL PROCESSING | EXCELLENCE | | | | ; | | EXCELLENCE | | | Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600 Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.