LA73062V

Monolithic Linear IC

Video Driver for Wideband

Overview

The LA73062V is a wideband video output interface. It is ideal as a driver for Composite, $\mathrm{S}, \mathrm{YPbPr}$, and RGB analog video signal outputs.
Incorporating low pass filters ($6 / 12 / 30 \mathrm{MHz}$), the LA73062V can also serve as a digital clock noise rejection filter.

Functions

- Six channel output
- 6 MHz low pass filter (SD) / 12 MHz or 30 MHz low pass filter (HD)
- 6dB amplifier
- Output mute
- Y/C_MIX
- S_DC_Output
- D_DC_Output
- Standby mode

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }}$ max		6.0	V
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 75^{\circ} \mathrm{C}$, Mounted on a circuit board*	780	mW
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

* Mounted on a specified board: $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy.
\square Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
■ Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LA73062V
Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		5.0	V
Operating supply voltage range	$\mathrm{V}_{\mathrm{CCO}}$		4.75 to 5.25	V
Input pin voltage application range	$\mathrm{V}_{\text {IN }}$		-0.3 to $\mathrm{Vccopg}+0.3$	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Parameter	Input signal				Out	Test Condition	Ratings			unit
	Point	Signal	Level [Vpp]	Freq [Hz]	Point		min	typ	max	
Current consumption 1						At a no signal.	68	86	104	mA
Current consumption 2						Standby mode. At a no signal.	0.0	0.5	1.0	mA
Internal reference regulator										
REG3V					T30		2.8	3.0	3.2	V
Video driver part										
Voltage gain 1 CV,Y,Py,R,G,B	T2A T2A T15A T13A T15A T17A	SIG1	0.3	100k	$\begin{aligned} & \text { T36 } \\ & \text { T34 } \\ & \text { T22 } \\ & \text { T24 } \\ & \text { T22 } \\ & \text { T20 } \\ & \hline \end{aligned}$	Output gain	5.5	6.0	6.5	dB
Voltage gain 2 C, Pr, Pb	$\begin{gathered} \hline \text { T4A } \\ \text { T13A } \\ \text { T17A } \\ \hline \end{gathered}$	SIG3	0.3	100k	$\begin{aligned} & \text { T32 } \\ & \text { T24 } \\ & \text { T20 } \end{aligned}$	Output gain	5.5	6.0	6.5	dB
Frequency response 1(SD) CV, Y	$\begin{aligned} & \mathrm{T} 2 \mathrm{~A} \\ & \mathrm{~T} 2 \mathrm{~A} \\ & \hline \end{aligned}$	SIG1	0.3	6M	$\begin{aligned} & \text { T36 } \\ & \text { T34 } \end{aligned}$	6 MHzLPF is selected. $\mathrm{f}=6 \mathrm{MHz} / 100 \mathrm{kHz}$	-3.0	0.0	3.0	dB
Frequency response 2(SD) C	T4A	SIG3	0.3	6M	T32	6 MHzLPF is selected. $\mathrm{f}=6 \mathrm{MHz} / 100 \mathrm{kHz}$	-3.0	0.0	3.0	dB
Frequency response 3(SD) CV, Y	$\begin{aligned} & \mathrm{T} 2 \mathrm{~A} \\ & \mathrm{~T} 2 \mathrm{~A} \\ & \hline \end{aligned}$	SIG1	0.3	27M	$\begin{aligned} & \text { T36 } \\ & \text { T34 } \end{aligned}$	6 MHzLPF is selected. $\mathrm{f}=27 \mathrm{MHz} / 100 \mathrm{kHz}$		-40	-30	dB
Frequency response 4(SD) C	T4A	SIG3	0.3	27M	T32	6 MHzLPF is selected. $\mathrm{f}=27 \mathrm{MHz} / 100 \mathrm{kHz}$		-40	-30	dB
$\begin{aligned} & \text { Frequency response 5(HD) } \\ & \text { Py,R,G,B } \end{aligned}$	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.3	12M	$\begin{aligned} & \text { T22 } \\ & \text { T24 } \\ & \text { T22 } \\ & \text { T20 } \end{aligned}$	12 MHzLPF is selected. $\mathrm{f}=12 \mathrm{MHz} / 100 \mathrm{kHz}$	-3.0	0.0	3.0	dB
Frequency response 6(HD) Pr, Pb	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.3	12M	$\begin{aligned} & \text { T24 } \\ & \text { T20 } \end{aligned}$	12 MHzLPF is selected. $\mathrm{f}=12 \mathrm{MHz} / 100 \mathrm{kHz}$	-3.0	0.0	3.0	dB
Frequency response 7(HD) Py,R,G,B	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.3	75M	$\begin{aligned} & \text { T22 } \\ & \text { T24 } \\ & \text { T22 } \\ & \text { T20 } \end{aligned}$	12 MHzLPF is selected. $\mathrm{f}=75 \mathrm{MHz} / 100 \mathrm{kHz}$		-40	-30	dB
Frequency response 8(HD) Pr, Pb	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.3	75M	$\begin{aligned} & \text { T24 } \\ & \text { T20 } \end{aligned}$	12 MHzLPF is selected. $\mathrm{f}=75 \mathrm{MHz} / 100 \mathrm{kHz}$		-40	-30	dB
$\begin{aligned} & \text { Frequency response 9(HD) } \\ & \text { Py,R,G,B } \end{aligned}$	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.3	20M	$\begin{aligned} & \text { T22 } \\ & \text { T34 } \\ & \text { T22 } \\ & \text { T20 } \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=20 \mathrm{MHz} / 100 \mathrm{kHz}$	-1.0	0.0	1.0	dB
Frequency response $10(\mathrm{HD})$ Pr, Pb	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.3	20M	$\begin{aligned} & \mathrm{T} 24 \\ & \mathrm{~T} 20 \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=20 \mathrm{MHz} / 100 \mathrm{kHz}$	-1.0	0.0	1.0	dB
Frequency response 11(HD) Py,R,G,B	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.3	30M	$\begin{aligned} & \text { T22 } \\ & \text { T34 } \\ & \text { T22 } \\ & \text { T20 } \\ & \hline \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=30 \mathrm{MHz} / 100 \mathrm{kHz}$	-4.0	-1.5	1.0	dB
Frequency response 12(HD) Pr, Pb	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.3	30M	$\begin{aligned} & \text { T24 } \\ & \text { T20 } \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=30 \mathrm{MHz} / 100 \mathrm{kHz}$	-4.0	-1.5	1.0	dB
Frequency response 13(HD) Py,R,G,B	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.3	75M	$\begin{aligned} & \text { T22 } \\ & \text { T34 } \\ & \text { T22 } \\ & \text { T20 } \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=75 \mathrm{MHz} / 100 \mathrm{kHz}$		-40	-30	dB

Continued on next page.

LA73062V
Continued from preceding page.

Parameter	Input signal				Out	Test Condition	Ratings			unit
	Point	Signal	Level [Vpp]	Freq [Hz]	Point		min	typ	max	
Frequency response 14(HD) Pr, Pb	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.3	75M	$\begin{aligned} & \text { T24 } \\ & \text { T20 } \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=75 \mathrm{MHz} / 100 \mathrm{kHz}$		-40	-30	dB
2nd order distortion 1(SD) CV,Y,Py,R,G,B	$\begin{aligned} & \text { T2A } \\ & \text { T2A } \\ & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.7	4M	$\begin{aligned} & \text { T36A } \\ & \text { T34A } \\ & \text { T22A } \\ & \text { T24A } \\ & \text { T22A } \\ & \text { T20A } \end{aligned}$	6MHzLPF, 12 MHzLPF is selected.		-40	-30	dB
2nd order distortion 2(SD) C, Pr,Pb	$\begin{gathered} \text { T4A } \\ \text { T13A } \\ \text { T17A } \\ \hline \end{gathered}$	SIG3	0.7	4M	$\begin{aligned} & \text { T32A } \\ & \text { T24A } \\ & \text { T20A } \\ & \hline \end{aligned}$	6MHzLPF, 12 MHzLPF is selected.		-40	-30	dB
2nd order distortion 3(HD) Py,R,G,B	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.7	10M	$\begin{aligned} & \text { T22A } \\ & \text { T24A } \\ & \text { T22A } \\ & \text { T20A } \end{aligned}$	30 MHzLPF is selected.		-40	-30	dB
2nd order distortion 4(HD) Pr, Pb	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.7	10M	$\begin{aligned} & \text { T24A } \\ & \text { T20A } \end{aligned}$	30 MHzLPF is selected.		-40	-30	dB
Amount of mute attenuation 1 CV,Y,Py,R,G,B	$\begin{aligned} & \text { T2A } \\ & \text { T2A } \\ & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.7	4M	$\begin{aligned} & \text { T36 } \\ & \text { T34 } \\ & \text { T22 } \\ & \text { T24 } \\ & \text { T22 } \\ & \text { T20 } \\ & \hline \end{aligned}$			-60	-50	dB
Amount of mute attenuation 2 $\mathrm{C}, \mathrm{Pr}, \mathrm{Pb}$	$\begin{gathered} \text { T4A } \\ \text { T13A } \\ \text { T17A } \\ \hline \end{gathered}$	SIG3	0.7	4M	$\begin{aligned} & \text { T32 } \\ & \text { T24 } \\ & \text { T20 } \\ & \hline \end{aligned}$			-60	-50	dB
Crosstalk between channels 1 CV,Y,Py,R,G,B	$\begin{aligned} & \text { T2A } \\ & \text { T2A } \\ & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.7	4M				-60	-50	dB
Crosstalk between channels 2 $\mathrm{C}, \mathrm{Pr}, \mathrm{~Pb}$	$\begin{aligned} & \text { T4A } \\ & \text { T13A } \\ & \text { T17A } \\ & \hline \end{aligned}$	SIG3	0.7	4M				-60	-50	dB
Video S/N 1(SD) CV, Y	$\begin{aligned} & \mathrm{T} 2 \mathrm{~A} \\ & \mathrm{~T} 2 \mathrm{~A} \end{aligned}$	SIG2	0.65		$\begin{aligned} & \text { T36 } \\ & \text { T34 } \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=$ Video (50\%White) 6 MHzLPF is selected. The band is between 100 kHz and 4.2 MHz .		-70	-60	dB
$\begin{aligned} & \text { Video S/N 2(HD) } \\ & \text { Py,R,G,B } \end{aligned}$	$\begin{aligned} & \hline \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG2	0.65		$\begin{aligned} & \hline \text { T22A } \\ & \text { T24A } \\ & \text { T22A } \\ & \text { T20A } \end{aligned}$	$\mathrm{V}_{\text {IN }}=$ Video (50% White) 30MHzLPF is selected. The band is between 100 kHz and 30 MHz .		-60	-50	dB
$\begin{aligned} & \text { G.D.1(SD) } \\ & \text { CV,Y } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \mathrm{~A} \\ & \mathrm{~T} 2 \mathrm{~A} \\ & \hline \end{aligned}$	SIG1	0.3	6M	$\begin{aligned} & \text { T36 } \\ & \text { T34 } \end{aligned}$	6 MHzLPF is selected. $\mathrm{f}=6 \mathrm{MHz} / 100 \mathrm{kHz}$		20	40	ns
$\begin{aligned} & \text { G.D.2(SD) } \\ & \text { C } \end{aligned}$	T4A	SIG3	0.3	6M	T32	6 MHzLPF is selected. $\mathrm{f}=6 \mathrm{MHz} / 100 \mathrm{kHz}$		20	40	ns
$\begin{aligned} & \text { G.D.3(HD) } \\ & \text { Py,R,G,B } \end{aligned}$	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \end{aligned}$	SIG1	0.3	12M	$\begin{aligned} & \text { T22 } \\ & \text { T24 } \\ & \text { T22 } \\ & \text { T20 } \end{aligned}$	12 MHzLPF is selected. $\mathrm{f}=12 \mathrm{MHz} / 100 \mathrm{kHz}$		10	20	ns
$\begin{aligned} & \text { G.D.4(HD) } \\ & \text { Pr,Pb } \end{aligned}$	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.3	12M	$\begin{aligned} & \text { T24 } \\ & \text { T20 } \end{aligned}$	12 MHzLPF is selected. $\mathrm{f}=12 \mathrm{MHz} / 100 \mathrm{kHz}$		10	20	ns
$\begin{aligned} & \text { G.D.5(HD) } \\ & \text { Py,R,G,B } \end{aligned}$	$\begin{aligned} & \text { T15A } \\ & \text { T13A } \\ & \text { T15A } \\ & \text { T17A } \\ & \hline \end{aligned}$	SIG1	0.3	30M	$\begin{aligned} & \text { T22A } \\ & \text { T24A } \\ & \text { T22A } \\ & \text { T20A } \\ & \hline \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=30 \mathrm{MHz} / 100 \mathrm{kHz}$		10	20	ns
$\begin{aligned} & \text { G.D.6(HD) } \\ & \text { Pr,Pb } \end{aligned}$	$\begin{aligned} & \text { T13A } \\ & \text { T17A } \end{aligned}$	SIG3	0.3	30M	$\begin{aligned} & \text { T24 } \\ & \text { T20 } \end{aligned}$	30 MHzLPF is selected. $\mathrm{f}=30 \mathrm{MHz} / 100 \mathrm{kHz}$		10	20	ns

LA73062V

Pin Control Table

SW No.	IN_Pin No.	OUT_Pin No.	SW function name	Control voltage		
				High (2.3V to V_{CC})	Open	Low (0 to 0.7V)
SW1	Pin3		SD_MUTE_CTL	SD_MUTE_OFF		SD_MUTE_ON
SW2	Pin7		Power_Save_CTL	Power_Save_OFF		Power_Save_ON
SW3	Pin11		Input_CTL	CLAMP_ON (RGB_Mode)		BIAS_ON (Component_Mode)
SW4	Pin14		Filter_CTL	12MHz_LPF_ON		30MHz_LPF_ON
SW5	Pin16		HD_MUTE_CTL	HD_MUTE_OFF		HD_MUTE_ON
S_DC	Pin6	Pin31	S_DET	High (4.0V to V_{CC})	Midd (1.8 to 2.4V)	Low (0 to 0.5V)
D_L1	Pin8	Pin29	D_LINE1	High (4.0V to V_{CC})	Midd (1.8 to 2.4V)	Low (0 to 0.5V)
D_L2	Pin9	Pin28	D_LINE2	High (4.0V to V_{CC})		Low (0 to 0.5V)
D_L3	Pin10	Pin27	D_LINE3	High (4.0V to V_{CC})	Midd (1.8 to 2.4V)	Low (0 to 0.5V)

Package Dimensions

unit : mm (typ)
3247A

SANYO : SSOP36(275mil)

Block Diagram

Please shorten the distance of the bold line to prevent oscillation.

Sample Application Circuit

Test Input Signal

Pin Function

Pin No.	Pin name	DC voltage	Signal wave form	In put / Out put form
P1	VCC_SD			
P2	Y_IN	1.8 V		
P3	SD_MUTE_CTL	5V: SD_MUTE_OFF OV: SD_MUTE_ON		
P4	C_IN	2.3 V		

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	DC voltage	Signal wave form	In put / Out put form
P5	GND_SD			
P6	S_DET_IN	5V: 16:9 OPEN: 4.3 Letter Box OV: 4:3		
P7	Power_Save_CTL	5V: Power_Save_OFF OV: Power_Save_ON		
P8	D_LINE1_IN	5V: 1125 (1080) OPEN: 750 (720) 0V: 525 (480)		
P9	D_LINE2_IN	5V: 59.94p/60p 0V: 59.94i/60i		
P10	D_LINE3_IN	5 V : 16:9 OPEN: 4:3 Letter Box OV: 4:3		
P11	INPUT_CTL	5V: Clamp OV: Bias		

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	DC voltage	Signal wave form	In put / Out put form
P12	$\mathrm{V}_{\text {CC_ }}$ HD			
P13	Pr/R_IN	Component: 2.3V (Bias) RGB: 1.8V (Clamp)		
P14	FIL_CTL	5V: 12MHz_LPF 0V: 30MHz_LPF		
P15	Py/G_IN	1.8 V		
P16	HD_MUTE_CTL	5V: HD_MUTE_OFF OV: HD_MUTE_ON		
P17	Pb/B_IN	Component: 2.3V (Bias) RGB: 1.8V (Clamp)		

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	DC voltage	Signal wave form	In put / Out put form
P18	GND_HD			
P19	N.C.			
P20	Pb/B_OUT	Component: 2.4V (Bias) RGB: 1.3V (Clamp)		
P21	GND_DR_HD			
P22	Py/G_OUT	1.3 V		
P23	N.C.			
P24	Pr/R_OUT	Component: 2.4V (Bias) RGB: 1.3V (Clamp)		
P25	VCC_DR_HD			
P26	N.C.			
P27	D_LINE3_OUT	5 V : 16:9 2.2V: 4:3 Letter Box 0V: 4:3		

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	DC voltage	Signal wave form	In put / Out put form
P28	D_LINE2_OUT	5V: 59.94p/60i 0V: 59.94i/60i		
P29	D_LINE1_OUT	5V: 1125 (1080) 2.2V: 750 (720) 0V: 525 (480)		
P30	REG3V	3.0 V		
P31	S_DET_OUT	5V: 16:9 2.2V: 4:3 Lerrer Box 0V: 4:3		
P32	C_OUT	2.4 V		
P33	GND_DR_SD			

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	DC voltage	Signal wave form	In put / Out put form
P34	Y_OUT	1.3 V		
P35	VCC_DR_SD			
P36	CV_OUT	1.3 V		

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
\square SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
\square In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
\square Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of August, 2007. Specifications and information herein are subject to change without notice.

