STK16C88 # 32K x 8 AutoStorePlus™ nvSRAM QuantumTrap™ CMOS Nonvolatile Static RAM ### **FEATURES** - Transparent Data Save on Power Down - Internal Capacitor Guarantees AutoStore™ Regardless of Power-Down Slew Rate - Nonvolatile Storage without Battery Problems - Directly Replaces 32K x 8 Static RAM, Battery-Backed RAM or EEPROM - 25ns, 35ns and 45ns Access Times - STORE to EEPROM Initiated by Software or AutoStorePlus™ on Power Down - No Data Loss from Undershoot - RECALL to SRAM Initiated by Software or Power Restore - 10mA Typical I_{cc} at 200ns Cycle Time - Unlimited READ, WRITE and RECALL Cycles - 1,000,000 STORE Cycles to EEPROM - 100-Year Data Retention over Full Industrial Temperature Range - Commercial and Industrial Temperatures - 28-Pin PDIP Package #### DESCRIPTION The STK16C88 is a fast SRAM with a nonvolatile EEPROM element incorporated in each static memory cell. The SRAM can be read and written an unlimited number of times, while independent nonvolatile data resides in EEPROM. Data transfers from the SRAM to the EEPROM (the STORE operation) can take place automatically on power down. An internal capacitor guarantees the STORE operation regardless of power-down slew rate. Transfers from the EEPROM to the SRAM (the RECALL operation) take place automatically on restoration of power. Initiation of STORE and RECALL cycles can also be controlled by entering control sequences on the SRAM inputs. The STK16C88 is pin-compatible with 32k x 8 SRAMs and battery-backed SRAMs, allowing direct substitution while enhancing performance. The STK14C88, which uses an external capacitor, and the STK15C88, which uses charge stored in system capacitance, are alternatives for systems needing AutoStorePlus™ operation. ## **BLOCK DIAGRAM** ## PIN CONFIGURATIONS | | | , | | | |-------------------|----|----|---------------------------|---------------| | A ₁₄ | 1 | 28 | □ V _{CC} | | | A ₁₂ [| 2 | 27 | W | | | A ₇ | 3 | 26 | □ A ₁₃ | | | A ₆ | 4 | 25 | □ A ₈ | | | A ₅ | 5 | 24 | □ A ₉ | | | A ₄ | 6 | 23 | □ A ₁₁ | | | A ₃ | 7 | 22 | ⊒ G | | | A ₂ | 8 | 21 | ☐ A ₁₀ | | | A ₁ | 9 | 20 | ΞE | | | A ₀ | 10 | 19 | \square DQ ₇ | | | $DQ_0 \square$ | 11 | 18 | \Box DQ ₆ | | | DQ ₁ | 12 | 17 | \square DQ ₅ | 28 - 600 PDIP | | DQ ₂ □ | 13 | 16 | \square DQ ₄ | | | V _{SS} | 14 | 15 | \square DQ ₃ | | | | | | | | #### **PIN NAMES** | A ₀ - A ₁₄ | Address Inputs | |-----------------------------------|----------------| | W | Write Enable | | DQ ₀ - DQ ₇ | Data In/Out | | Ē | Chip Enable | | G | Output Enable | | V _{CC} | Power (+ 5V) | | V _{SS} | Ground | ## ABSOLUTE MAXIMUM RATINGS^a | Voltage on Input Relative to Ground | 0.5V to 7.0V | |---|------------------------------| | Voltage on Input Relative to V _{SS} | $-0.6V$ to $(V_{CC} + 0.5V)$ | | Voltage on DQ ₀₋₇ | $-0.5V$ to $(V_{CC} + 0.5V)$ | | Temperature under Bias | –55°C to 125°C | | Storage Temperature | –65°C to 150°C | | Power Dissipation | 1W | | DC Output Current (1 output at a time, 1s dur | ation)15mA | Note a: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ## DC CHARACTERISTICS $$(V_{CC} = 5.0V \pm 10\%)$$ | SYMBOL | PARAMETER | СОММ | ERCIAL INDUST | | STRIAL | UNITS | NOTES | |-------------------------------|--|-------------------|----------------------|-------------------|----------------------|----------------|--| | STWIBUL | PARAMETER | MIN | MAX | MIN | MAX | UNITS | NOTES | | I _{CC1} ^b | Average V _{CC} Current | | 97
80
70 | | 100
85
70 | mA
mA
mA | t _{AVAV} = 25ns
t _{AVAV} = 35ns
t _{AVAV} = 45ns | | lcc ₂ c | Average V _{CC} Current during STORE | | 3 | | 3 | mA | All Inputs Don't Care, V _{CC} = max | | lcc3 p | Average V _{CC} Current at t _{AVAV} = 200ns 5V, 25°C, Typical | | 10 | | 10 | mA | $\overline{W} \ge (V_{CC} - 0.2V)$
All Others Cycling, CMOS Levels | | I _{SB1} ^d | Average V _{CC} Current (Standby, Cycling TTL Input Levels) | | 30
25
22 | | 31
26
23 | mA
mA
mA | $\begin{array}{l} t_{\text{AVAV}} = 25\text{ns, } \overline{\underline{E}} \geq V_{\text{IH}} \\ t_{\text{AVAV}} = 35\text{ns, } \overline{\underline{E}} \geq V_{\text{IH}} \\ t_{\text{AVAV}} = 45\text{ns, } \overline{\underline{E}} \geq V_{\text{IH}} \end{array}$ | | I _{SB2} ^d | V _{CC} Standby Current
(Standby, Stable CMOS Input Levels) | | 1.5 | | 1.5 | mA | $\overline{E} \ge (V_{CC} - 0.2V)$
All Others $V_{IN} \le 0.2V$ or $\ge (V_{CC} - 0.2V)$ | | I _{ILK} | Input Leakage Current | | ±1 | | ±1 | μА | $V_{CC} = max$ $V_{IN} = V_{SS} \text{ to } V_{CC}$ | | lolk | Off-State Output Leakage Current | | ±5 | | ±5 | μА | $V_{CC} = max$ $V_{IN} = V_{SS} \text{ to } V_{CC}, \overline{E} \text{ or } \overline{G} \ge V_{IH}$ | | V _{IH} | Input Logic "1" Voltage | 2.2 | V _{CC} + .5 | 2.2 | V _{CC} + .5 | V | All Inputs | | V _{IL} | Input Logic "0" Voltage | V _{SS} 5 | 0.8 | V _{SS} 5 | 0.8 | V | All Inputs | | V _{OH} | Output Logic "1" Voltage | 2.4 | | 2.4 | | V | I _{OUT} =-4mA | | V _{OL} | Output Logic "0" Voltage | | 0.4 | | 0.4 | V | I _{OUT} = 8mA | | T _A | Operating Temperature | 0 | 70 | -40 | 85 | °C | | Note b: I_{CC_1} and I_{CC_3} are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded. Note c: I_{CC_2} and I_{CC_4} are the average currents required for the duration of the respective *STORE* cycles (t_{STORE}). Note d: $E \ge V_{IH}$ will not produce standby current levels until any nonvolatile cycle in progress has timed out. ## **AC TEST CONDITIONS** | Input Pulse Levels | |---| | Input Rise and Fall Times ≤ 5ns | | Input and Output Timing Reference Levels 1.5V | | Output Load | #### **CAPACITANCE**^e $(T_A = 25^{\circ}C, f = 1.0MHz)$ | SYMBOL | PARAMETER | MAX | UNITS | CONDITIONS | |------------------|--------------------|-----|-------|----------------------| | C _{IN} | Input Capacitance | 5 | pF | $\Delta V = 0$ to 3V | | C _{OUT} | Output Capacitance | 7 | pF | $\Delta V = 0$ to 3V | Note e: These parameters are guaranteed but not tested. Figure 1: AC Output Loading ## **SRAM READ CYCLES #1 & #2** | (V_{CC}) | = 5. | V0. | \pm | 10 | 19% | |------------|------|-----|-------|----|-----| | 1,4(1) | _ 0. | | _ | | ,,, | | | SYME | BOLS | DADAMETER | STK16 | C88-25 | STK16 | C88-35 | STK16C88-45 | | LINUTE | |-----|--------------------------|------------------|-----------------------------------|-------|--------|-------|--------|-------------|-----|--------| | NO. | #1, #2 | Alt. | PARAMETER | | MAX | MIN | MAX | MIN | MAX | UNITS | | 1 | t _{ELQV} | t _{ACS} | Chip Enable Access Time | | 25 | | 35 | | 45 | ns | | 2 | t_{AVAV}^f | t _{RC} | Read Cycle Time | 25 | | 35 | | 45 | | ns | | 3 | t _{AVQV} g | t _{AA} | Address Access Time | | 25 | | 35 | | 45 | ns | | 4 | t_{GLQV} | t _{OE} | Output Enable to Data Valid | | 10 | | 15 | | 20 | ns | | 5 | t _{AXQX} g | t _{OH} | Output Hold after Address Change | 5 | | 5 | | 5 | | ns | | 6 | t _{ELQX} | t_{LZ} | Chip Enable to Output Active | 5 | | 5 | | 5 | | ns | | 7 | t_{EHQZ}^h | t _{HZ} | Chip Disable to Output Inactive | | 10 | | 13 | | 15 | ns | | 8 | t_{GLQX} | t _{OLZ} | Output Enable to Output Active | 0 | | 0 | | 0 | | ns | | 9 | t _{GHQZ} h | t _{OHZ} | Output Disable to Output Inactive | | 10 | | 13 | | 15 | ns | | 10 | t _{ELICCH} e | t _{PA} | Chip Enable to Power Active | 0 | | 0 | | 0 | | ns | | 11 | t _{EHICCL} d, e | t _{PS} | Chip Disable to Power Standby | | 25 | | 35 | | 45 | ns | Note f: \overline{W} must be high during SRAM READ cycles and low during SRAM WRITE cycles. Note g: I/O state assumes \overline{E} , $\overline{G} \le V_{IL}$ and $\overline{W} \ge V_{IH}$; device is continuously selected. Note h: Measured <u>+</u> 200mV from steady state output voltage. ## SRAM READ CYCLE #1: Address Controlled^{f, g} ## SRAM READ CYCLE #2: E Controlled ## **SRAM WRITE CYCLES #1 & #2** | NO. | SYMBOLS | | | DADAMETER | STK16C88-25 | | STK16C88-35 | | STK16C88-45 | | UNITS | |-----|------------------------|-------------------|-----------------|----------------------------------|-------------|-----|-------------|-----|-------------|-----|-------| | NO. | #1 | #2 | Alt. | PARAMETER | | MAX | MIN | MAX | MIN | MAX | UNITS | | 12 | t _{AVAV} | t _{AVAV} | t _{WC} | Write Cycle Time | 25 | | 35 | | 45 | | ns | | 13 | t _{WLWH} | t _{WLEH} | t _{WP} | Write Pulse Width | 20 | | 25 | | 30 | | ns | | 14 | t _{ELWH} | t _{ELEH} | t _{CW} | Chip Enable to End of Write | 20 | | 25 | | 30 | | ns | | 15 | t _{DVWH} | t _{DVEH} | t _{DW} | Data Set-up to End of Write | 10 | | 12 | | 15 | | ns | | 16 | t _{WHDX} | t _{EHDX} | t _{DH} | Data Hold after End of Write | 0 | | 0 | | 0 | | ns | | 17 | t _{AVWH} | t _{AVEH} | t _{AW} | Address Set-up to End of Write | 20 | | 25 | | 30 | | ns | | 18 | t _{AVWL} | t _{AVEL} | t _{AS} | Address Set-up to Start of Write | 0 | | 0 | | 0 | | ns | | 19 | t _{WHAX} | t _{EHAX} | t _{WR} | Address Hold after End of Write | 0 | | 0 | | 0 | | ns | | 20 | t _{WLQZ} h, i | | t _{WZ} | Write Enable to Output Disable | | 10 | | 13 | | 15 | ns | | 21 | t _{WHQX} | | t _{OW} | Output Active after End of Write | 5 | | 5 | | 5 | | ns | Note i: $\begin{array}{ll} \text{If \overline{W} \underline{is}$ low when \overline{E} goes low, the outputs remain in the high-impedance state.} \\ \text{Note j:} & \overline{E} \text{ or \overline{W} must be $\geq V_{\text{IH}}$ during address transitions.} \end{array}$ ## SRAM WRITE CYCLE #1: W Controlled ## SRAM WRITE CYCLE #2: E Controlled ## AutoStorePlus™/POWER-UP RECALL | $(V_{CC} =$ | 5. | 0V | \pm | 10% | |-------------|----|----|-------|-----| |-------------|----|----|-------|-----| | NO. | SYMBOLS | PARAMETER | | 6C88 | LIMITS | NOTES | |-----|----------------------|---|-----|------|--------|-------| | NO. | Standard | FARAMETER | MIN | MAX | ONITS | NOTES | | 22 | t _{RESTORE} | Power-up RECALL Duration | | 550 | μs | - 1 | | 23 | t _{stg} | Power-down AutoStore™ Slew Time to Ground | 500 | | ns | f, h | | 24 | V _{SWITCH} | Low Voltage Trigger Level | 4.0 | 4.5 | V | | | 25 | V _{RESET} | Low Voltage Reset Level | | 3.9 | V | | Note k: $t_{RESTORE}$ starts from the time V_{CC} rises above V_{SWITCH} . ## AutoStorePlus™/POWER-UP RECALL ## SOFTWARE STORE/RECALL MODE SELECTION | Ē | w | A ₁₃ - A ₀ (hex) | MODE | I/O | NOTES | |---|---|--|--|---|-------| | L | Н | 0E38
31C7
03E0
3C1F
303F
0FC0 | Read SRAM
Read SRAM
Read SRAM
Read SRAM
Read SRAM
Nonvolatile <i>STORE</i> | Output Data Output Data Output Data Output Data Output Data Output Data Output High Z | l, m | | L | н | 0E38
31C7
03E0
3C1F
303F
0C63 | Read SRAM
Read SRAM
Read SRAM
Read SRAM
Read SRAM
Nonvolatile <i>RECALL</i> | Output Data Output Data Output Data Output Data Output Data Output Data Output High Z | l, m | Note I: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle. Note m: While there are 15 addresses on the STK16C88, only the lower 14 are used to control software modes. ## SOFTWARE STORE/RECALL CYCLE^{n, o} $(V_{CC} = 5.0V \pm 10\%)$ | NO. | SYMBOLS | PARAMETER | STK16C88-25 | | STK16C88-35 | | STK16C88-45 | | UNITS | |-----|------------------------|------------------------------------|-------------|-----|-------------|-----|-------------|-----|-------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | 26 | t _{AVAV} | STORE/RECALL Initiation Cycle Time | 25 | | 35 | | 45 | | ns | | 27 | t _{AVEL} n | Address Set-up Time | 0 | | 0 | | 0 | | ns | | 28 | t _{ELEH} n | Clock Pulse Width | 20 | | 25 | | 30 | | ns | | 29 | t _{ELAX} g, n | Address Hold Time | 20 | | 20 | | 20 | | ns | | 30 | t _{RECALL} | RECALL Cycle Duration | | 20 | | 20 | | 20 | μs | | 31 | tSTORE | STORE Cycle Duration | | 10 | | 10 | | 10 | ms | Note n: The software sequence is clocked with \overline{E} controlled reads. Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F, 303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive cycles. ## SOFTWARE STORE/RECALL CYCLE: E Controlledo ## **DEVICE OPERATION** The *AutoStorePlus*™ STK16C88 is a fast 32K x 8 SRAM that does not lose its data on power-down. The data is preserved in integral *QuantumTrap*™ EEPROM while power is unavailable. The nonvolatility of the STK16C88 does not require any system intervention or support: *AutoStorePlus*™ on power-down and automatic RECALL on power-up guarantee data integrity without the use of batteries ### **NOISE CONSIDERATIONS** Note that the STK16C88 is a high-speed memory and so must have a high-frequency bypass capacitor of approximately $0.1\mu\text{F}$ connected between V_{CC} and V_{SS} , using leads and traces that are as short as possible. As with all high-speed CMOS ICs, normal careful routing of power, ground and signals will help prevent noise problems. ### **SRAM READ** The STK16C88 performs a READ cycle whenever E and \overline{G} are low and \overline{W} is high. The address specified on pins A_{0-14} determines which of the 32,768 data bytes will be accessed. When the READ is initiated by an address transition, the outputs will be valid after a delay of \underline{t}_{AVQV} (READ cycle #1). If the READ is initiated by \overline{E} or \overline{G} , the outputs will be valid at \underline{t}_{ELQV} or at \underline{t}_{GLQV} , whichever is later (READ cycle #2). The data outputs will repeatedly respond to address changes within the \underline{t}_{AVQV} access time without the need for transitions on any control input pins, and will remain valid until another address change or until \overline{E} or \overline{G} is brought high. #### SRAM WRITE A WRITE cycle is performed whenever \overline{E} and \overline{W} are low. The address inputs must be stable prior to entering the WRITE cycle and must remain stable until either \overline{E} or \overline{W} goes high at the end of the cycle. The data on the common I/O pins DQ_{0-7} will be written into the memory if it is valid t_{DVWH} before the end of a \overline{W} controlled WRITE or t_{DVEH} before the end of an \overline{E} controlled WRITE. It is recommended that \overline{G} be kept high during the entire WRITE cycle to avoid data bus contention on the common I/O lines. If \overline{G} is left low, internal circuitry will turn off the output buffers t_{WLQZ} after \overline{W} goes low. #### AutoStorePlus™ OPERATION The STK16C88's automatic *STORE* on power-down is completely transparent to the system. The $AutoStore^{\mathsf{TM}}$ initiation takes less than 500ns when power is lost (V_CC < V_SWITCH) at which point the part depends only on its internal capacitor for *STORE* completion. This safe transfer of data from SRAM to EEPROM takes place regardless of power supply slew rate. In order to prevent unneeded *STORE* operations, automatic *STORE*s will be ignored unless at least one WRITE operation has taken place since the most recent *STORE* or *RECALL* cycle. Software-initiated *STORE* cycles are performed regardless of whether or not a WRITE operation has taken place. #### POWER-UP RECALL During power up, or after any low-power condition ($V_{CC} < V_{RESET}$), an internal *RECALL* request will be latched. When V_{CC} once again exceeds the sense voltage of V_{SWITCH} , a *RECALL* cycle will automatically be initiated and will take $t_{RESTORE}$ to complete. If the STK16C88 is in a WRITE state at the end of power-up *RECALL*, the SRAM data will be corrupted. To help avoid this situation, a 10k Ω resistor should be connected either between \overline{W} and system V_{cc} or between \overline{E} and system V_{cc} . #### SOFTWARE NONVOLATILE STORE The STK16C88 software STORE cycle is initiated by executing sequential READ cycles from six specific address locations. During the STORE cycle an erase of the previous nonvolatile data is first performed, followed by a program of the nonvolatile elements. The program operation copies the SRAM data into nonvolatile memory. Once a STORE cycle is initiated, further input and output are disabled until the cycle is completed. Because a sequence of READs from specific addresses is used for *STORE* initiation, it is important that no other READ or WRITE accesses intervene in the sequence or the sequence will be aborted and no *STORE* or *RECALL* will take place. To initiate the software STORE cycle, the following READ sequence must be performed: | 1 | ١. | Read address | 0E38 (hex) | Valid READ | |---|----|--------------|------------|----------------------| | 2 | 2. | Read address | 31C7 (hex) | Valid READ | | 3 | 3. | Read address | 03E0 (hex) | Valid READ | | 4 | ŧ. | Read address | 3C1F (hex) | Valid READ | | 5 | 5. | Read address | 303F (hex) | Valid READ | | 6 | 6. | Read address | 0FC0 (hex) | Initiate STORE cycle | The software sequence must be clocked with \overline{E} controlled READs. Once the sixth address in the sequence has been entered, the STORE cycle will commence and the chip will be disabled. It is important that READ cycles and not WRITE cycles be used in the sequence, although it is not necessary that \overline{G} be low for the sequence to be valid. After the t_{STORE} cycle time has been fulfilled, the SRAM will again be activated for READ and WRITE operation. ## SOFTWARE NONVOLATILE RECALL A software *RECALL* cycle is initiated with a sequence of READ operations in a manner similar to the software *STORE* initiation. To initiate the *RECALL* cycle, the following sequence of READ operations must be performed: | 1. | Read address | 0E38 (hex) | Valid READ | |----|--------------|------------|-----------------------| | 2. | Read address | 31C7 (hex) | Valid READ | | 3. | Read address | 03E0 (hex) | Valid READ | | 4. | Read address | 3C1F (hex) | Valid READ | | 5. | Read address | 303F (hex) | Valid READ | | 6. | Read address | 0C63 (hex) | Initiate RECALL cycle | Internally, *RECALL* is a two-step procedure. First, the SRAM data is cleared, and second, the nonvola- Figure 2: I_{CC} (max) Reads tile information is transferred into the SRAM cells. After the t_{RECALL} cycle time the SRAM will once again be ready for READ and WRITE operations. The *RECALL* operation in no way alters the data in the EEPROM cells. The nonvolatile data can be recalled an unlimited number of times. #### HARDWARE PROTECT The STK16C88 offers hardware protection against inadvertent *STORE* operation and SRAM WRITES during low-voltage conditions. When $V_{\rm CC} < V_{\rm SWITCH}$, all software *STORE* operations and SRAM WRITES are inhibited. #### LOW AVERAGE ACTIVE POWER The STK16C88 draws significantly less current when it is cycled at times longer than 50ns. Figure 2 shows the relationship between Icc and READ cycle time. Worst-case current consumption is shown for both CMOS and TTL input levels (commercial temperature range, $V_{CC} = 5.5V$, 100% duty cycle on chip enable). Figure 3 shows the same relationship for WRITE cycles. If the chip enable duty cycle is less than 100%, only standby current is drawn when the chip is disabled. The overall average current drawn by the STK16C88 depends on the following items: 1) CMOS vs. TTL input levels; 2) the duty cycle of chip enable; 3) the overall cycle rate for accesses; 4) the ratio of READs to WRITES; 5) the operating temperature; 6) the V_{CC} level; and 7) I/ O loading. Figure 3: I_{CC} (max) Writes ## **ORDERING INFORMATION** | STK16C88 | | | | |----------|--|--|--| |