53250

RADIATION TOLERANT 40VDC - 10A SOLID STATE RELAY

Features:

- This Design Tested to 100 krad (Si) Total Dose
- Hermetically Sealed in Surface Mount Package
- Low On-resistance
- 10A Continuous Output Current
- Performance over -55°C to +125°C
- Optically Coupled
- Input/Output Isolation Tested to 1000 VDC
- Shock and Vibration Resistant

Applications:

- Satellite/Space Systems
- Military/High Reliability Systems
- Power Distribution/Switching
- Solenoid Driver
- Stepper Motor Driver
- Switching Heaters

DESCRIPTION

The 53250 is a SPST, radiation tolerant, DC solid state relay (SSR) designed for military and space applications. This light-weight device is resistant to damage from severe shock and vibration, and is immune to contact related problems inherent in electro-mechanical relays. The SSR is enclosed in a hermetic metal package to ensure reliability in harsh environments. Effective isolation of 1000 VDC between control and load circuits is achieved through the use of optical coupling.

Functionally, the device operates as a single-pole single-throw, normally open (1 Form A) DC solid-state relay. The SSR is actuated by an input current of 5 to 15 mA, which can be supplied from standard logic types such as open-collector TTL. Output is provided by a power MOSFET exhibiting very low $R_{DS(ON)}$ and capable of carrying a continuous current of 10 amperes. This design has demonstrated it will function with minimal degradation after exposure to 100 krad (Si) total dose. This device is available in a variety of quality levels from COTS to class K including any custom screening requirements. The basic data sheet part is environmentally screened to H level in accordance with Table C-IX of MIL-PRF-38534.

ABSOLUTE MAXIMUM RATINGS

Output Voltage	50 VDC
Continuous Output current	10 A
Peak Output Current (1)	22 A
Storage Temperature Range	65°C to +150°C
Operating Junction Temperature	55°C to +150°C
Lead Solder Temperature for 10 seconds	300°C
Continuous Input Current	20 mA
Peak Input Current (2)	
Reverse Input Voltage	6 VDC
Reverse Input Voltage Power Dissipation (3)	25 W
Linear Derating Factor	
·	

Micropac Industries cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Micropac reserves the right to make changes at any time in order to improve design and to supply the best product possible.

RECOMMENDED OPERATING CONDITIONS:

Parameter	Symbol	Min.	Max.	Units
Output Voltage	V _{O (OFF)}		40	VDC
Continuous Output Current	I _{O (ON)}		10	А
Input Current (on)	I _{F (ON)}	5	15	mA
Input Voltage (off)	V _{F (OFF)}	0	1	VDC
Operating Case Temperature	T _C	-55	125	°C

ELECTRICAL SPECIFICATIONS (Pre-Irradiation)

 T_C = -55°C to +125°C unless otherwise specified

Parameter	Sym.	Min.	Typ.*	Max.	Units	Test Conditions	Notes
Output On-Resistance	R (ON)	_	0.032	0.060	Ω	I _F = 15 mA I _O = 1 A	
Output Leakage Current	I _{O (OFF)}	_	<1	250	μΑ	$V_F = 1 \text{ VDC}$ $V_O = 50 \text{ VDC}$	
Input Forward Voltage	V _F	3.10	3.75	4.20	VDC	I _F = 15 mA	
Input Reverse Breakdown Voltage	V _R	6	40	_	VDC	I _R = 10 μA	
Input-Output Leakage	I _{I-O}	_	_	1	μА	RH \leq 45%, t = 5 s V _{I-O} = 1000 VDC T _C = 25°C	4, 5
Turn-On Time	t _{ON}	_	3.3	8.0	ms	I _F = 15 mA	Figures 3, 4
Turn-Off time	t _{OFF}	_	0.35	2	ms	$I_O = 10 A$ V load = 40 VDC Pulse width = 10 ms	Figures 3, 5
Rise Time	t _R	_	2.5	6.0	ms		6,
Fall Time	. t _F	_	0.19	1.0	ms	Duty cycle ≤ 1%	Figure 3
Thermal Resistance (junction-case)	θ_{JC}	_	4	_	°C/W		
Output Off-Capacitance	C _{O (OFF)}	_	1.8		nF	V _O = 28 VDC f = 1 MHz	
Input Capacitance	C _{IN}		27		pF	V _F = 0 V f = 1 MHz	
Input-Output Capacitance	C _{I-O}	_	2.6		pF	V _{I-O} = 0 V f = 1 MHz	4

^{*} All typical values are at T_C = 25°C

Micropac Industries cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Micropac reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Notes:

- 1. Non-repetitive, pulse width ≤ 10ms, T_C = 25°C (see Figure 6).
- 2. Non-repetitive, pulse width $\leq 100 \mu s$, $T_C = 25 ^{\circ}C$.
- 3. Case Temperature $T_C = 25^{\circ}C$ (see Figure 7).
- 4. Input pins shorted together and output pins shorted together.
- 5. Input-output potential applied momentarily, not an operating condition.
- 6. Rise time is measured from 10% to 90% of load current (90% to 10% of V_O). Fall time is measured from 90% to 10% of load current (10% to 90% of V_O).

CAUTION:

Care should be taken so as not to exceed the maximum power dissipation and maximum junction temperature when repetitively switching loads.

INPUT	OUTPUT
ON	ON
OFF	OFF

Figure 1. Truth Table

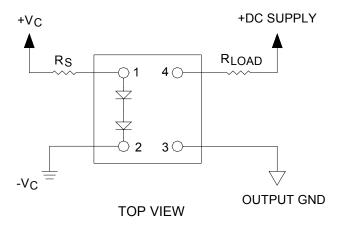


Figure 2. Terminal Connections

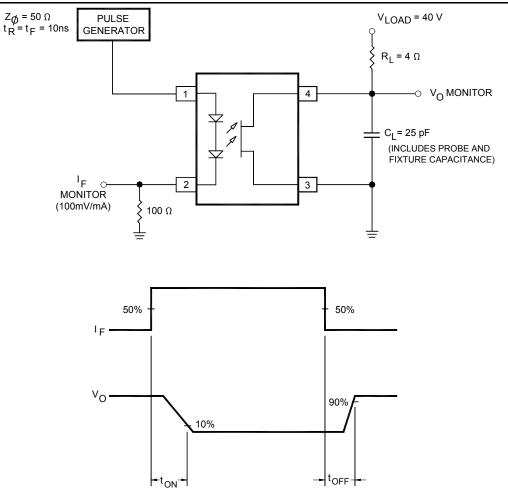


Figure 3. Switching Waveforms and Test Circuits

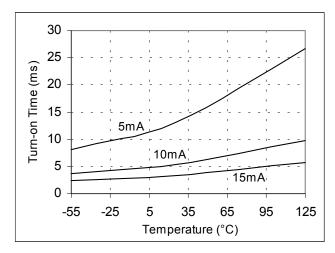


Figure 4. Turn-on Time vs. Case Temperature for Different Values of I_F (typical data).

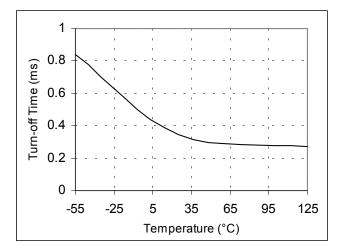
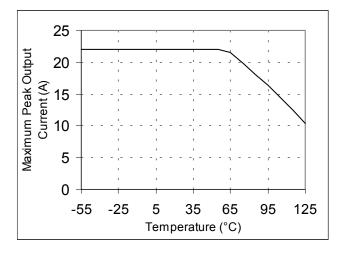



Figure 5. Turn-off Time vs. Case Temperature with $I_F = 5$ to 15 mA (typical data).

Micropac Industries cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Micropac reserves the right to make changes at any time in order to improve design and to supply the best product possible.

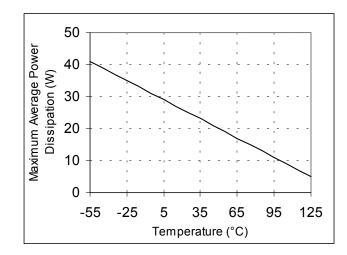


Figure 6. Maximum Non-repetitive Output Current vs. Case Temperature (pulse width \leq 10 ms).

Figure 7. Maximum Average Output Power Dissipation vs. Case Temperature.

TOTAL DOSE TEST RESULTS

<u>Disclaimer:</u> The data of 4 representative units irradiated in Cobalt-60 chamber is only typical of one lot of solid state relays. Micropac does not guarantee performance of its SSR to these radiation levels. Individual lots have to be screened to guarantee the performance.

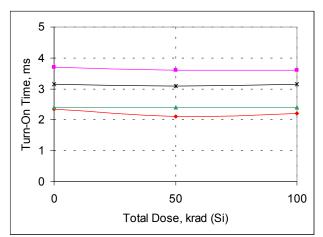


Figure 8. Turn-On Time vs Total Dose at V_{out} = 20 V, R_{load} = 4 Ω , I_{in} = 15 mA, 10% duty cycle.

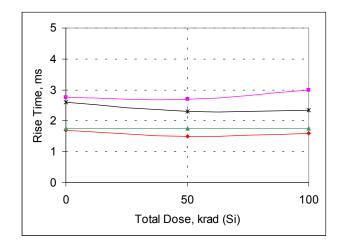


Figure 9. Rise Time vs Total Dose at V_{out} = 20 V, R_{load} = 4 Ω , I_{in} = 15 mA, 10% duty cycle.

Micropac Industries cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Micropac reserves the right to make changes at any time in order to improve design and to supply the best product possible.

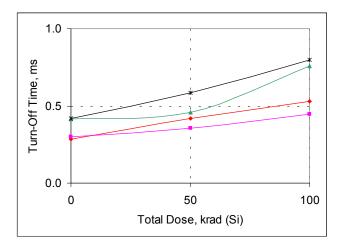


Figure 10. Turn-Off Time vs Total Dose at V_{out} = 20 V, R_{load} = 4 Ω , I_{in} = 15 mA, 10% duty cycle.

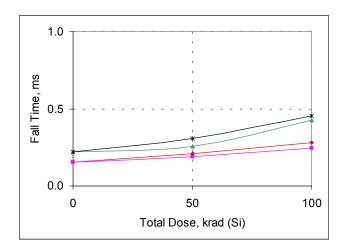


Figure 11. Fall Time vs Total Dose at V_{out} = 20 V, R_{load} = 4 Ω , I_{in} = 15 mA, 10% duty cycle.

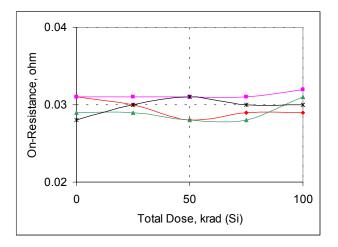


Figure 12. On-Resistance vs Total Dose at $I_F = 10$ mA, $I_{out} = 100$ mA for 1s.

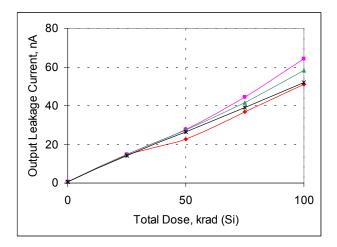


Figure 13. Output Leakage Current vs Total Dose at $V_F = 1 \text{ V}$, $V_{out} = 50 \text{ V}$.