FEATURES

3 V to 5 V supply operation
True 12-bit accuracy
5 V operation @ <10 $\mu \mathrm{A}$
Fast 3-wire serial input
Fast $1 \mu \mathrm{~s}$ settling time
2.4 MHz, 4-quadrant multiply BW

Upgrade for DAC8043 and DAC8043A
Standard and rotated pinout

APPLICATIONS

Ideal for PLC applications in industrial control Programmable amplifiers and attenuators Digitally controlled calibration and filters Motion control systems

GENERAL DESCRIPTION

The AD5441 is an improved high accuracy 12-bit multiplying digital-to-analog converter (DAC) in space-saving 8-lead packages. Featuring serial input, double buffering, and excellent analog performance, the AD5441 is ideal for applications where PC board space is at a premium. Improved linearity and gain error performance permit reduced part counts through the elimination of trimming components. Separate input clock and load DAC control lines allow full user control of data loading and analog output.
The circuit consists of a 12-bit serial-in/parallel-out shift register, a 12-bit DAC register, a 12-bit CMOS DAC, and control logic. Serial data is clocked into the input register on the rising edge of the CLOCK pulse. When the new data-word is clocked in, it is loaded into the DAC register with the $\overline{\mathrm{LD}}$ input pin. Data in the DAC register is converted to an output current by the DAC.

Consuming only $10 \mu \mathrm{~A}$ from a single 5 V power supply, the AD5441 is the ideal low power, small size, high performance solution to many application problems.
The AD5441 is specified over the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) temperature range. It is available in an 8-lead LFCSP and an 8-lead MSOP.

Figure 2. Integral Nonlinearity Error vs. Code

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

REVISION HISTORY

3/07-Revision PrA: Preliminary Version
Typical Performance Characteristics 7
Terminology 10
Parameter Definitions 11
General Circuit Information 11
Output Impedance 11
Applications Information. 11
Unipolar 2-Quadrant Multiplying 11
Bipolar 4-Quadrant Multiplying. 12
Interface Logic Information 12
Digital Section 12
Outline Dimensions 13

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$@ V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ReF }}=10 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Condition
STATIC PERFORMANCE Resolution Relative Accuracy Differential Nonlinearity Gain Temperature Coefficient ${ }^{1}$ Output Leakage Current Zero-Scale Error	N INL DNL Gfse TCGFs Ikg IzsE			$\begin{aligned} & 12 \\ & \pm 1.0 \\ & \pm 1.0 \\ & \pm 2.0 \\ & \pm 5 \\ & \pm 5 \\ & \pm 25 \\ & 0.03 \\ & 0.15 \end{aligned}$	Bits LSB LSB LSB ppm $/{ }^{\circ} \mathrm{C}$ nA nA LSB LSB	All grades monotonic to 12 bits Data $=$ FFFH lout pin measured Data $=000_{\mathrm{H}}$, lout pin measured $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, Data $=000_{\mathrm{H}}$, lout pin measured Data $=000_{H}$ $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, Data $=000_{\mathrm{H}}$
REFERENCE INPUT Input Resistance Input Capacitance ${ }^{1}$	$\begin{aligned} & \mathrm{R}_{\text {REF }} \\ & \mathrm{C}_{\text {REF }} \end{aligned}$	7	5	15	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$	Absolute temperature coefficient < $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
ANALOG OUTPUT Output Capacitance ${ }^{1}$	Cout		$\begin{aligned} & 25 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Data }=000_{\mathrm{H}} \\ & \text { Data }=\text { FFF }_{H} \end{aligned}$
DIGITAL INPUTS Digital Input Low Digital Input High Input Leakage Current Input Capacitance ${ }^{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$	2.4		$\begin{aligned} & 0.8 \\ & 1 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {LoGic }}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & \mathrm{~V}_{\text {Logic }}=0 \mathrm{~V} \end{aligned}$
INTERFACE TIMING ${ }^{1,2}$ Data Setup Data Hold Clock Width High Clock Width Low Load Pulse Width LD DAC High to MSB CLK High LSB CLK to LD DAC	tbs tDH t_{CH} tcl tLD tLD1 $t_{\text {ASB }}$	$\begin{aligned} & 10 \\ & 5 \\ & 25 \\ & 25 \\ & 25 \\ & 0 \\ & 0 \end{aligned}$			ns ns ns ns ns ns ns	
AC CHARACTERISTICS ${ }^{1}$ Output Current Settling Time DAC Glitch Digital Feedthrough Feedthrough (Vout/Vref) Total Harmonic Distortion Output Noise Density Multiplying Bandwidth Power Supply Range Positive Supply Current Power Dissipation Power Supply Sensitivity	ts Q FT THD e_{n} BW VDD Range ldD PDISS PSS		$\begin{aligned} & \text { TBD } \\ & 1 \\ & -85 \\ & 2.4 \end{aligned}$	1 20 17 5 10 50 0.002	$\mu \mathrm{s}$ nVs mV p-p dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ MHz V $\mu \mathrm{A}$ $\mu \mathrm{W}$ \%/\%	To $\pm 0.01 \%$ of full-scale, external op amp OP42 Data $=000_{\mathrm{H}}$ to $\mathrm{FFF}_{\mathrm{H}}$ to $000_{\mathrm{H}}, \mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$ $\begin{aligned} & V_{\text {REF }}=20 \mathrm{~V} \text { p-p, data }=000_{\mathrm{H}}, \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{~V}_{\text {REF }}=6 \mathrm{Vrms}, \text { data }=F F F_{\mathrm{H}}, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ 10 Hz to 100 kHz between $\mathrm{R}_{\text {FB }}$ and lout $-3 \mathrm{~dB}, \mathrm{~V}_{\text {out }} / V_{\text {Ref, }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV} \mathrm{rms}$, data $=F F F_{\mathrm{H}}$ $\mathrm{V}_{\text {LOGIC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$ $\mathrm{V}_{\text {LOGIC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$ $\Delta V_{D D}= \pm 5 \%$

[^0]
ABSOLUTE MAXIMUM RATINGS

The AD5441 contains 346 transistors. The die size measures $70.3 \mathrm{~mm} \times 57.1 \mathrm{~mm}=4014$ square mm .

Table 2.

Parameter	Rating
VDD to GND	-0.3 V, +8V
$V_{\text {REF }}$ to GND	$\pm 18 \mathrm{~V}$
$\mathrm{R}_{\text {FB }}$ to GND	$\pm 18 \mathrm{~V}$
Logic Inputs to GND	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Viout to GND	$-0.3 \mathrm{~V}, \mathrm{~V} \mathrm{DD}+0.3 \mathrm{~V}$
lout Short Circuit to GND	50 mA
Package Power Dissipation	$\left(T_{J} \mathrm{max}-\mathrm{T}_{\mathrm{A}}\right.$) $/ \theta_{\mathrm{JA}}$
Thermal Resistance	
$\theta_{\text {Ja: }}$: 8-Lead MSOP	$142^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA: }}$: 8-Lead LFCSP ${ }^{1}$	$75^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {лс: }} 8$ 8-Lead MSOP	$44^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{j}} \mathrm{c}$ 8-Lead LFCSP ${ }^{1}$	$18^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature (T, max)	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Preliminary Technical Data

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. 8-LeadLFCSP Pin Configuration

Figure 4. 8-Lead MSOP Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Descriptions
1	VREF	DAC Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code.
2	RFB	Internal Matching Feedback Resistor. Connect to external op amp output.
3	lout	DAC Current Output, full-scale output 1 LSB less than reference input voltage $-V_{\text {REF. }}$
4	GND	Analog and Digital Ground.
5	$\overline{\text { LD }}$	Load Strobe, Level-Sensitive Digital Input. Transfers shift-register data to DAC register while active low.
6	SRI	See Table 4 for operation.
7	12-Bit Serial Register Input, data loads directly into the shift register MSB first. Extra leading bits are ignored.	
8	VLK $_{\text {DD }}$	Clock Input, positive-edge clocks data into shift register.

Table 4. Control-Logic Truth Table

CLK	$\overline{\text { LD }}$	Serial Shift Register Function	DAC Register Function
$\uparrow 1$	H	Shift-register-data advanced one bit	Latched
H or L	L	No effect	Updated with current shift register contents L
\uparrow_{1}	No effect	Latched all 12 bits	

$1 \uparrow$ equals positive logic transition.

Preliminary Technical Data

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Total Unadjusted Error Histogram

Figure 7. Full-Scale Output Temperature Coefficient Histogram

Figure 8. Supply Current IDD vs. Logic Input Voltage

Figure 9. Supply Current IDD vs. Temperature

Figure 10. Supply Current IDD vs. Clock Frequency

Figure 11. Power Supply Rejection Ratio (PSRR) vs. Frequency

Figure 12. Linearity Error vs. Digital Code

Figure 13. Linearity Error vs. External Op Amp Offset Vos

Figure 15. Large Signal Settling Time

Figure 16. Reference Multiplying Bandwidth vs. Frequency and Code

Figure 17. Linearity Error vs. Reference Voltage

Figure 18. Long-Term Drift Accelerated by Burn-In

Figure 19. THD vs. Frequency

TERMINOLOGY

Relative Accuracy

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in LSBs or as a percentage of the full-scale reading.

Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of -1 LSB maximum over the operating temperature range ensures monotonicity.

Gain Error

Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For these DACs, ideal maximum output is $\mathrm{V}_{\text {REF }}-1 \mathrm{LSB}$. Gain error of the DACs is adjustable to zero with external resistance.

Zero Scale Error

Calculated from worst-case $\mathrm{R}_{\text {REF }}$:

$$
I_{\text {ISEE }}(\mathrm{LSB})=\left(R_{R E F} \times I_{L K G} \times 4096\right) / V_{R E F} .
$$

Output Leakage Current

Output leakage current is the current that flows into the DAC
ladder switches when they are turned off. For the Iour terminal, it can be measured by loading all 0 s to the DAC and measuring the Iour current.

Output Capacitance

Capacitance from Iout 1 to AGND.
Digital-to-Analog Glitch Impulse
The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-s or nV-s, depending on whether the glitch is measured as a current or voltage signal.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs may be capacitively coupled through the device and produce noise on the Iout pins. This noise is coupled from the outputs of the device onto follow-on circuitry. This noise is digital feedthrough.

Multiplying Feedthrough Error

This is the error due to capacitive feedthrough from the DAC reference input to the DAC Iour 1 terminal when all 0 s are loaded to the DAC.

Total Harmonic Distortion (THD)

The DAC is driven by an ac reference. The ratio of the rms sum of the harmonics of the DAC output to the fundamental value is the THD. Usually only the lower order harmonics, such as second to fifth, are included.

$$
T H D=20 \log \frac{\sqrt{\mathrm{~V}_{2}{ }^{2}+\mathrm{V}_{3}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\mathrm{V}_{5}{ }^{2}}}{\mathrm{~V}_{1}}
$$

Compliance Voltage Range

The maximum range of (output) terminal voltage for which the device will provide the specified characteristics.

Output Noise Spectral Density

Calculation from

$$
e_{n}=\sqrt{ } 4 K T R B
$$

where:
$\mathrm{K}=$ Boltzmann Constant $\left(\mathrm{J} /{ }^{\circ} \mathrm{K}\right)$
$\mathrm{R}=$ Resistance (Ω)
$\mathrm{T}=$ Resistor temperature (${ }^{\circ} \mathrm{K}$)
$\mathrm{B}=1 \mathrm{~Hz}$ bandwidth

PARAMETER DEFINITIONS

GENERAL CIRCUIT INFORMATION

The AD5441 is a 12 -bit multiplying DAC with a low temperature coefficient. It contains an $\mathrm{R}-2 \mathrm{R}$ resistor ladder network, data input and control logic, and two data registers.
The digital circuitry forms an interface in which serial data can be loaded under microprocessor control into a 12-bit shift register and then transferred, in parallel, to the 12-bit DAC register.

The analog portion of the AD5441 contains an inverted R-2R ladder network consisting of silicon-chrome, highly stable ($50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$), thin-film resistors, and 12 pairs of NMOS current-steering switches, see Figure 20. These switches steer binarily weighted currents into either Iour or GND; this yields a constant current in each ladder leg, regardless of digital input code. This constant current results in a constant input resistance at $V_{\text {ref }}$ equal to R. The $V_{\text {ref }}$ input may be driven by any reference voltage or current, ac or dc that is within the limits stated in the Absolute Maximum Ratings.

*THESE SWITCHES PERMANENTLY ON.
NOTES

1. SWITCHES SHOWN FOR DIGITAL INPUTS HIGH.

Figure 20. Simplified DAC Circuit
The 12 output current steering NMOS FET switches are in series with each R-2R resistor.
To further ensure accuracy across the full temperature range, permanently on MOS switches were included in series with the feedback resistor and the R-2R ladder's terminating resistor. Figure 20 shows the location of the series switches. During any testing of the resistor ladder or $\mathrm{R}_{\text {feedback }}$ (such as incoming inspection), $V_{D D}$ must be present to turn on these series switches.

OUTPUT IMPEDANCE

The AD5441's output resistance, as in the case of the output capacitance, varies with the digital input code. This resistance, looking back into the Iout terminal, may be between $10 \mathrm{k} \Omega$, the feedback resistor alone when all digital inputs are low, and $7.5 \mathrm{k} \Omega$, the feedback resistor in parallel with approximate $30 \mathrm{k} \Omega$ of the R-2R ladder network resistance when any single bit logic is high. Static accuracy and dynamic performance will be affected by these variations.

APPLICATIONS INFORMATION

In most applications, linearity depends upon the potential of the Iout and GND pins being at the same voltage potential. The DAC is connected to an external precision op amp inverting input. The external amplifiers noninverting input should be tied directly to ground without the usual bias current compensating resistor (see Figure 21 and Figure 22). The selected amplifier should have a low input bias current and low drift over temperature. The amplifiers input offset voltage should be nulled to less than 200 mV (less than 10% of 1 LSB). All grounded pins should tie to a single common ground point to avoid ground loops. The $V_{D D}$ power supply should have a low noise level with adequate bypassing. It is best to operate the AD5441 from the analog power supply and grounds.

UNIPOLAR 2-QUADRANT MULTIPLYING

The most straightforward application of the AD5441 is in the 2-quadrant multiplying configuration shown in Figure 21. If the reference input signal is replaced with a fixed dc voltage reference, the DAC output will provide a proportional dc voltage output according to the transfer equation

$$
V_{\text {OUT }}=-D / 4096 \times V_{\text {REF }}
$$

where:
D is the decimal data loaded into the DAC register.
$V_{R E F}$ is the externally applied reference voltage source.

Figure 21. Unipolar (2-Quadrant) Operation

BIPOLAR 4-QUADRANT MULTIPLYING

Figure 22 shows a suggested circuit to achieve 4-quadrant multiplying operation. The summing amplifier multiplies Voutı by 2 and offsets the output with the reference voltage so that a midscale digital input code of 2048 places $V_{\text {out2 }}$ at 0 V . The negative full-scale voltage will be $\mathrm{V}_{\text {Ref }}$ when the DAC is loaded with all zeros. The positive full-scale output will be $-\left(\mathrm{V}_{\text {Ref }}-1\right.$ LSB) when the DAC is loaded with all ones. Therefore, the digital coding is offset binary. The voltage output transfer equation for various input data and reference (or signal) values follows

$$
V_{\text {out2 }}=(D / 2048-1)-V_{\text {REF }}
$$

where:
D is the decimal data loaded into the DAC register.
$V_{R E F}$ is the externally applied reference voltage source.

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
2. MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS

R3 AND R4.
3. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED
IF A1/A2 IS A HIGH SPEED AMPLIFIER.

Figure 22. Bipolar (4-Quadrant) Operation

INTERFACE LOGIC INFORMATION

The AD5441 has been designed for ease of operation. The timing diagram in Figure 5 illustrates the input register loading sequence. Note that the most significant bit (MSB) is loaded first. Once the 12-bit input register is full, the data is transferred to the DAC register by taking $\overline{\mathrm{LD}}$ momentarily low.

DIGITAL SECTION

The AD5441's digital inputs, SRI, $\overline{\mathrm{LD}}$, and CLK, are TTL compatible. The input voltage levels affect the amount of current drawn from the supply; peak supply current occurs as the digital input (VIN) passes through the transition region. See Figure 8 for the supply current vs. logic input voltage graph. Maintaining the digital input voltage levels as close as possible to the supplies, VDD and GND, minimizes supply current consumption. The AD5441's digital inputs have been designed with ESD resistance incorporated through careful layout and the inclusion of input protection circuitry. Figure 23 shows the input protection diodes and series resistor; this input structure is duplicated on each digital input. High voltage static charges applied to the inputs are shunted to the supply and ground rails through forward-biased diodes. These protection diodes were designed to clamp the inputs to well below dangerous levels during static discharge conditions.

Figure 23. Digital Input Protection

OUTLINE DIMENSIONS

Figure 24. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] (CP-8-1)
Dimensions are shown in millimeters

Figure 25. 8-Lead Mini Small Outline Package [MINI_SO] (RM-8)
Dimensions are shown in millimeters

NOTES

Preliminary Technical Data	AD5441

NOTES

NOTES

[^0]: ${ }^{1}$ These parameters are guaranteed by design and not subject to production testing.
 ${ }^{2}$ All input control signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}(10 \%$ to 90% of 5 V$)$ and timed from a voltage level of 1.6 V .

[^1]: ${ }^{1}$ Exposed pad soldered to application board.

