International IgR Rectifier

Description

The AHV Series of DC/DC converters are designed to replace the AHE/ATO family of converters in applications requiring compliance to MIL-STD-704A through E, in particular the input surge requirement of 80 volts specified to withstand transient input voltage of 80 volts. No input voltage or output power derating is necessary over the full military temperature range.

These converters are packaged in an extremely rugged, low profile package that meets all requirements of MIL-STD-883 and MIL-PRF-38534. Parallel seam weld sealing and the use of ceramic pin feedthru seals assure long term hermeticity after exposure to extended temperature cycling.

The basic circuit is a push-pull forward topology using power MOSFET switches. The nominal switching frequency is 500 KHz . A unique current injection circuit assures current balancing in the power switches. All AHV series converters use a single stage LC input filter to attenuate input ripple current. A low power 11.5 volt series regulator provides power to an epitaxial CMOS custom pulse width modulator integrated circuit. This single integrated circuit provides all PWM primary circuit functions. Power is transferred from primary to secondary through a ferrite core power transformer. An error voltage signal is generated by comparing a highly stable reference voltage with the converter output voltage and drives the PWM through a unique wideband magnetic feedback circuit. This proprietary feedback circuit provides an extremely wide bandwidth, high gain control loop, with high phase margin. The feedback control loop gain is insensitive to temperature, radiation, aging, and variations in manufacturing. The transfer function of the feedback circuit is a function of the feedback transformer turns ratio which cannot change when subjected to environmental extremes.

Manufactured in a facility fully qualified to MIL-PRF38534, these converters are available in four screening grades to satisfy a wide range of requirements.

Features

■ 80 Transient Input (100 msec max.)

- 50 VDC Input (Continous)
- 16 to 40 VDC Input Range
- Single, Dual and Triple Outputs
- 15 Watts Output Power
(No Temperature Derating)
■ Low Input / Output Noise
- Full Military Temperature Range

■ Wideband PWM Control Loop

- Magnetic Feedback

■ Low Profile Hermetic Package (0.405")
■ Short Circuit and Overload Protection
■ Constant Switching Frequency (500 KHz)

- True Hermetic Package (Parallel Seam Welded, Ceramic Pin Feedthru)

The CH grade is fully compliant to the requirements of MIL-PRF-38534 for class H. The HB grade is processed and screened to the class H requirement, but may not necessarily meet all of the other MIL-PRF-38534 requirements, e.g., element evaluation and Periodic Inspection (P.I.) not required. Both grades are tested to meet the complete group " A " test specification over the full military temperature range without output power deration. Two grades with more limited screening are also available for use in less demanding applications. Variations in electrical, mechanical and screening can be accommodated. Contact Advanced Analog for special requirements.

AHV28XX Series
Specifications (Single Output Models)
$T_{\text {CASE }}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=+28 \mathrm{~V} \pm 5 \%$ unless otherwise specified

ABSOLUTE MAXIMUM RATINGS		
Input Voltage	-0.5 V to 50 VDC (continuous) $80 \mathrm{~V}(100 \mathrm{~ms})$	
Power Output	Internally limited, 17.5 W typical	
Soldering	$300^{\circ} \mathrm{C}$ for 10 seconds $(1$ pin at a time)	
Temperature Range	Operating	$-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
	Storage	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$

TEST	SYMBOL	Condition$\begin{gathered} -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{N}}=28 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0 \\ \text { unless otherwise specified } \end{gathered}$	Group A Subgroups	AHV2805S		AHV2812S		AHV2815S		Units
				Min	Max	Min	Max	Min	Max	
STATIC CHARACTERISTICS OUTPUT Voltage Current Ripple Voltage ${ }^{1}$ Power	$\begin{aligned} & \mathrm{V}_{\text {out }} \\ & \mathrm{I}_{\text {out }} \\ & \mathrm{V}_{\text {Rip }} \\ & \mathrm{P}_{\text {out }} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{I}_{\text {out }}=0 \\ & \mathrm{~V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{~V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{BW}=\mathrm{DC} \text { to } 1 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \end{aligned}$	$\begin{gathered} 1 \\ 2,3 \\ 1,2,3 \\ 1,2,3 \\ 1,2,3 \\ \hline \end{gathered}$	$\begin{gathered} 4.95 \\ 4.90 \\ 0.0 \end{gathered}$	$\begin{gathered} 5.05 \\ 5.10 \\ 3.00 \\ 60 \end{gathered}$	$\begin{gathered} 11.88 \\ 11.76 \\ 0.0 \\ \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 12.12 \\ 12.24 \\ 1.25 \\ 60 \end{gathered}$	$\begin{gathered} 14.85 \\ 14.70 \\ 0.0 \\ \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 15.15 \\ 15.30 \\ 1.00 \\ 60 \end{gathered}$	$\begin{gathered} V \\ V \\ \text { A } \\ m V p-p \\ \mathrm{~W} \\ \hline \end{gathered}$
REGULATION Line Load	VRLINE VRLOAD	$\begin{aligned} & V_{\text {IN }}=16,28, \text { and } 40 \text { VDC } \\ & I_{\text {out }}=0 \text {, half load and full load } \\ & \text { VIN }=16,28 \text {, and } 40 \text { VDC } \\ & I_{\text {out }}=0 \text {, half load and full load } \end{aligned}$	$\begin{gathered} 1 \\ 2,3 \\ 1,2,3 \end{gathered}$		$\begin{gathered} 5 \\ 25 \\ 50 \end{gathered}$		$\begin{gathered} 30 \\ 60 \\ 120 \end{gathered}$		$\begin{gathered} 35 \\ 75 \\ 150 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
INPUT Current Ripple Current	$\mathrm{I}_{\text {IN }}$ $\mathrm{I}_{\text {RIP }}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=0, \text { Inhibit }(\text { pin } 2)=0 \\ & \mathrm{I}_{\text {out }}=0, \text { Inhibit }(\text { pin } 2)=\text { Open } \\ & \mathrm{I}_{\text {out }}=\text { Full load } \end{aligned}$	$\begin{array}{r} 1,2,3 \\ 1,2,3 \end{array}$		$\begin{aligned} & 18 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 18 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 18 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{mAp}-\mathrm{p} \\ \hline \end{gathered}$
EFFICIENCY	$\mathrm{E}_{\text {FF }}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=\text { Full Load } \\ & \mathrm{T}_{\mathrm{c}}=+25^{\circ} \mathrm{C} \end{aligned}$	1	72		72		72		\%
ISOLATION	ISO	Input to output or any pin to case (except pin 8) at 500 VDC $\mathrm{TC}=+25^{\circ} \mathrm{C}$	1	100		100		100		$\mathrm{M} \Omega$
Capacitive Load ${ }^{2,3}$	C_{L}	No effect on DC performance $\mathrm{TC}=+25^{\circ} \mathrm{C}$	4		500		200		200	$\mu \mathrm{F}$
Load Fault Power Dissipation	$P_{\text {o }}$	Overload, TC $=+25^{\circ} \mathrm{C}^{4}$ Short Circuit, TC $=+25^{\circ} \mathrm{C}$	1		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		$\begin{aligned} & 8,5 \\ & 8.5 \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
Switching Frequency	$\mathrm{F}_{\text {s }}$	$\mathrm{I}_{\text {out }}=$ Full Load	4	450	550	450	550	450	550	KHz
DYNAMIC CHARACTERISTICS Step Load Changes Output Transient ${ }^{5}$ Recovery ${ }^{5.6}$		50% Load $_{155} 100 \%$ Load No Load ${ }_{135} 50 \%$ 50% Load $_{135} 100 \%$ No Load ${ }_{355} 50 \%$ Load 50% Load $_{255}$ No ILoad	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & -300 \\ & -500 \end{aligned}$	$\begin{gathered} +300 \\ +500 \\ 70 \\ 200 \\ 5 \end{gathered}$	$\begin{aligned} & -300 \\ & -750 \end{aligned}$	$\begin{gathered} +300 \\ +750 \\ 70 \\ 1500 \\ 5 \end{gathered}$	$\begin{aligned} & -300 \\ & -750 \end{aligned}$	$\begin{gathered} +300 \\ +750 \\ 70 \\ 1500 \\ 5 \end{gathered}$	mVpk mVpk $\mu \mathrm{s}$ $\mu \mathrm{S}$ ms
Step Line Changes Output Transient Recovery	$\begin{gathered} \mathrm{VOT}_{\mathrm{LINE}} \\ \mathrm{TT}_{\mathrm{LNE}} \end{gathered}$	Input step 16 to 40 VDC Input step 40 to 16 VDC Input step 16 to 40 VDC ${ }^{3,6,7}$ Input step 40 to $16 \mathrm{VDC}^{3.6,7}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$		$\begin{gathered} 300 \\ -1000 \\ 800 \\ 800 \end{gathered}$		$\begin{gathered} 500 \\ -1500 \\ 800 \\ 800 \end{gathered}$		$\begin{gathered} 500 \\ -1500 \\ 800 \\ 800 \end{gathered}$	mVpk mVpk $\mu \mathrm{s}$ $\mu \mathrm{S}$
TURN-ON Overshoot Delay	$\begin{aligned} & \text { VTon }_{\text {os }} \\ & \text { T on D } \end{aligned}$	$\mathrm{I}_{\text {out }}=\mathrm{OA}$ and Full Load $\mathrm{I}_{\text {out }}=\mathrm{O}$ and Full Load ${ }^{8}$	$\begin{array}{r} 4,5,6 \\ 4,5,6 \\ \hline \end{array}$		$\begin{gathered} 550 \\ 10 \\ \hline \end{gathered}$		$\begin{gathered} 750 \\ 10 \\ \hline \end{gathered}$		$\begin{gathered} 750 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mVpk} \\ \mathrm{~ms} \end{gathered}$
Load Fault Recovery	$\mathrm{TR}_{\text {IF }}$	$\mathrm{V}_{\text {IN }}=16$ to 40 VDC	4,5,6		10		10		10	ms

Notes to Specifications (Single Output Models)

1. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
2. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
3. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter shall be guaranteed to the limits specified.
4. An overload is that condition with a load in excess of the rated load but less than necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
5. Load step transition time between 2 to 10 microseconds.
6. Recovery time is measured from the initiation of the transient to where $\mathrm{V}_{\text {OUT }}$ has returned to within ± 1 percent of $\mathrm{V}_{\text {out }}$ at 50 percent load.
7. Input step transition time between 2 and 10 microseconds
8. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhinbit pin (pin 2) while power is applied to the input. Above $125^{\circ} \mathrm{C}$ case temperature, derate output power linearly to 0 at $135^{\circ} \mathrm{C}$ case.
$T_{\text {CASE }}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=+28 \mathrm{~V} \pm 5 \%$ unless otherwise specified

ABSOLUTE MAXIMUM RATINGS		
Input Voltage	-0.5 V to 50 VDC (continuous) $80 \mathrm{~V}(100 \mathrm{~ms})$	
Power Output	Internally limited, 17.5 W typical	
Soldering	$300^{\circ} \mathrm{C}$ for 10 seconds (1 pin at a time)	
Temperature Range	Operating	$-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
	Storage	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$

TEST	SYMBOL	Condition $\begin{gathered} -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{IN}}=28 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0, \end{gathered}$ unless otherwise specified	Group A Subgroups	AHV2812D		AHV2815D		Units
				Min	Max	Min	Max	
STATIC CHARACTERISTICS OUTPUT Voltage ${ }^{1}$ Current ${ }^{1,2}$ Ripple Voltage ${ }^{1,3}$ Power ${ }^{1,2,4}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \\ & \mathrm{I}_{\text {OUT }} \\ & \mathrm{V}_{\text {RIP }} \\ & \mathrm{P}_{\text {OUT }} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \\ & \mathrm{~V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{~V}_{\mathrm{IN}}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{BW}=\mathrm{DC} \text { to } 2 \mathrm{MHz} \\ & \mathrm{~V}_{\mathbb{I N}}=16,28, \text { and } 40 \mathrm{VDC} \end{aligned}$	$\begin{gathered} 1 \\ 2,3 \\ 1,2,3 \\ 1,2,3 \\ 1,2,3 \\ \hline \end{gathered}$	$\begin{gathered} \pm 11.88 \\ \pm 11.76 \\ 0.0 \\ \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \pm 12.12 \\ \pm 12.24 \\ \pm 625 \\ 60 \end{gathered}$	$\begin{gathered} \pm 14.85 \\ \pm 14.70 \\ 0.0 \\ \\ \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \pm 15.15 \\ \pm 15.30 \\ \pm 500 \\ 60 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{mVp}-\mathrm{p} \\ \mathrm{~W} \end{gathered}$
$\begin{aligned} & \text { REGULATION } \\ & \text { Line }^{1,5} \\ & \text { Load }^{1} \end{aligned}$	$\mathrm{VR}_{\text {LINE }}$ $\mathrm{I}_{\text {OUt }}$ $\mathrm{VR}_{\text {LOAD }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=16,28 \text {, and } 40 \text { VDC } \\ & \mathrm{I}_{\text {OUT }}=0 \text {, half load and full load } \\ & \text { VIN }=16,28 \text {, and } 40 \text { VDC } \\ & \mathrm{I}_{\text {OUT }}=0 \text {, half load and full load } \end{aligned}$	$\begin{gathered} 1 \\ 2,3 \\ 1,2,3 \end{gathered}$		$\begin{gathered} 30 \\ 60 \\ 120 \end{gathered}$		$\begin{gathered} 35 \\ 75 \\ 150 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
INPUT Current Ripple Current ${ }^{3}$	$\mathrm{I}_{\mathbb{N}}$ $I_{\text {RIP }}$	$\mathrm{I}_{\text {OUT }}=0$, Inhibit (pin 2) Tied to input return (pin 10) $I_{\text {out }}=0$, Inhibit $($ pin 2$)=$ Open $I_{\text {OUT }}=$ Full load $\mathrm{BW}=\mathrm{DC}$ to 2 MHz	$\begin{aligned} & \text { 1,2,3 } \\ & \text { 1,2,3 } \end{aligned}$		$\begin{aligned} & 18 \\ & 65 \\ & 50 \end{aligned}$		18 65 50	$\begin{gathered} m A \\ m A \\ m A p-p \end{gathered}$
EFFICIENCY	$\mathrm{E}_{\text {FF }}$	$\begin{aligned} & I_{\text {out }}=\text { Full Load } \\ & T_{c}=+25^{\circ} \mathrm{C} \end{aligned}$	1	72		72		\%
ISOLATION	ISO	Input to output or any pin to case (except pin 8) at 500 VDC, $\mathrm{TC}=+25^{\circ} \mathrm{C}$	1	100		100		$\mathrm{M} \Omega$
Capacitive Load ${ }^{\text {b,T }}$	C_{L}	No effect on DC performance $\mathrm{TC}=+25^{\circ} \mathrm{C}$	4		200		200	$\mu \mathrm{F}$
Load Fault Power Dissipation	P_{D}	Overload, $\mathrm{TC}=+25^{\circ} \mathrm{C}^{8}$ Short Circuit, TC $=+25^{\circ} \mathrm{C}$	1		$\begin{aligned} & 8,5 \\ & 8.5 \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
Switching Frequency	$\mathrm{F}_{\text {s }}$	$\mathrm{I}_{\text {OUT }}=$ Full Load	4	450	550	450	550	KHz
DYNAMIC CHARACTERISTICS Step Load Changes Output Transient ${ }^{9}$ Recovery ${ }^{9,10}$	$\begin{gathered} \mathrm{VOT}_{\text {LOAD }} \\ \mathrm{TT}_{\text {LOAD }} \end{gathered}$	50% Load $_{135} 100 \%$ Load No Load ${ }_{135} 50 \%$ 50% Load ${ }_{135} 100 \%$ No Load ${ }_{335} 50 \%$ Load 50% Load $_{335}$ No ILoad	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & -300 \\ & -500 \end{aligned}$	$\begin{gathered} +300 \\ +500 \\ 70 \\ 1500 \\ 5 \end{gathered}$	$\begin{aligned} & -300 \\ & -500 \end{aligned}$	$\begin{gathered} +300 \\ +500 \\ 70 \\ 1500 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{mVpk} \\ \mathrm{mVpk} \\ \mu \mathrm{~S} \\ \mu \mathrm{~S} \\ \mathrm{~ms} \\ \hline \end{gathered}$
Step Line Changes Output Transient ${ }^{7,11}$ Recovery ${ }^{7,10,11}$	VOT $_{\text {LINE }}$ $\mathrm{TT}_{\text {LINE }}$	Input step 16 to 40 VDC Input step 40 to 16 VDC Input step 16 to 40 VDC Input step 40 to 16 VDC	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$		$\begin{gathered} 1200 \\ -1500 \\ 4 \\ 4 \\ \hline \end{gathered}$		$\begin{gathered} 1500 \\ -1500 \\ 4 \\ 4 \end{gathered}$	$\begin{gathered} \text { mVpk } \\ \mathrm{mVpk} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \hline \end{gathered}$
TURN-ON Overshoot ${ }^{1}$ Delay ${ }^{1,12}$	VTon $_{\text {os }}$ T on D	$\mathrm{I}_{\text {out }}=\mathrm{O}$ and Full Load $\mathrm{I}_{\text {out }}=\mathrm{O}$ and Full Load	$\begin{array}{r} 4,5,6 \\ 4,5,6 \\ \hline \end{array}$		$\begin{gathered} 600 \\ 10 \\ \hline \end{gathered}$		$\begin{gathered} 600 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mVpk} \\ \mathrm{~ms} \\ \hline \end{gathered}$
Load Fault Recovery	$\mathrm{TR}_{\text {LF }}$		4,5,6		10		10	ms

For Notes to Specifications, refer to page 5
www.irf.com

AHV28XX Series

Specifications (Triple Output Models)

$T_{\text {CASE }}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=+28 \mathrm{~V} \pm 5 \%$ unless otherwise specified

TEST	SYMBOL	Condition $\begin{gathered} -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\text {IN }}=28 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0, \end{gathered}$ unless otherwise specified	Group A Subgroups	AHV2812T		AHV2815T		Units
				Min	Max	Min	Max	
STATIC CHARACTERISTICS OUTPUT Voltage ${ }^{1}$	$V_{\text {OUT }}$	$\mathrm{I}_{\text {OUT }}=0($ main $)$$\mathrm{I}_{\text {OUT }}=0(\text { dual })^{1}$						
			1	4.95	5.05	4.95	5.05	V
			2,3	4.90	5.10	4.90	5.10	V
			1	± 11.88	± 12.12	± 14.85	± 15.15	V
			2,3	± 11.76	± 12.24	± 14.70	± 15.30	V
Current ${ }^{1,2,3}$	$\mathrm{I}_{\text {out }}$	$\mathrm{V}_{\mathrm{IN}}=16,28$, and 40 VDC (main)	1,2,3	0.0	2000	0.0	2000	mA
		$\mathrm{V}_{\mathrm{IN}}=16,28$, and 40 VDC (dual) ${ }^{1}$	1,2,3	0.0	± 208	0.0	± 167	mA
Ripple Voltage ${ }^{1,4}$	$\mathrm{V}_{\text {RIP }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=16,28 \text {, and } 40 \mathrm{VDC} \\ & \mathrm{BW}=\mathrm{DC} \text { to } 2 \mathrm{MHz} \text { (main) } \end{aligned}$	1,2,3		80		80	$m \vee p-p$
	$\mathrm{P}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{BW}=\mathrm{DC} \text { to } 2 \mathrm{MHz} \text { (main) } \end{aligned}$	1,2,3		40		40	mVp-p
Power ${ }^{1,2,3}$		$\mathrm{V}_{\mathrm{IN}}=16,28$, and 40 VDC (main)	1,2,3	10		10		W
		(+dual)	1,2,3	2.5		2.5		W
		(-dual)	1,2,3	2.5		2.5		W
		(total)	1,2,3	15		15		W
$\begin{aligned} & \text { REGULATION }_{\text {Line }}{ }^{1,3} \\ & \text { Load }^{1,3} \end{aligned}$	$\mathrm{VR}_{\mathrm{LINE}}$$\mathrm{VR}_{\text {LOAD }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{I}_{\text {OUT }}=0,50 \% \text {, and } 100 \% \text { load (main) } \\ & \mathrm{I}_{\text {OUT }}=0,50 \% \text {, and } 100 \% \text { load (dual) } \\ & \mathrm{V}_{\text {IN }}=16,28, \text { and } 40 \mathrm{VDC} \\ & \mathrm{I}_{\text {out }}=0,50 \% \text {, and } 100 \% \text { load (main) } \\ & \mathrm{I}_{\text {OUT }}=0,50 \% \text {, and } 100 \% \text { load (dual) } \end{aligned}$	1,2,3					
					25		25	mV
					± 60		± 75	mV
					50		50	mV
					± 60		± 75	mV
INPUT	I_{IN}							
			1,2,3		15		15	mA
Ripple Current ${ }^{4}$		Tied to input return (pin 10)						
	$\mathrm{I}_{\text {RIP }}$	$\mathrm{I}_{\text {OUT }}=0$	1,2,3		50		50	mA
		Inhibit (pin 2) = open						
		$\mathrm{I}_{\text {OUT }}=2000 \mathrm{~mA}$ (main)	1,2,3		50		50	mAp-p
		$\mathrm{I}_{\text {OUT }}= \pm 208 \mathrm{~mA}(\pm 12 \mathrm{~V})$						
		$\mathrm{I}_{\text {OUT }}= \pm 167 \mathrm{~mA}(\pm 15 \mathrm{~V})$						
		$\mathrm{BW}=\mathrm{DC}$ to 2 MHz						
EFFICIENCY	$\mathrm{E}_{\text {FF }}$	$\mathrm{I}_{\text {OUT }}=2000 \mathrm{~mA}$ (main)	1	72		72		\%
		$\mathrm{I}_{\text {OUT }}= \pm 208 \mathrm{~mA}(\pm 12 \mathrm{~V})$						
		$\mathrm{I}_{\text {OUT }}= \pm 167 \mathrm{~mA}(\pm 15 \mathrm{~V})$						
ISOLATION	ISO	Input to output or any pin to	1	100		100		$\mathrm{M} \Omega$
		case (except pin 7) at 500 VDC, $\mathrm{TC}=+25^{\circ} \mathrm{C}$						
Capacitive Load ${ }^{\text {b, }}$	$\mathrm{C}_{\llcorner }$	No effect on DC performance						
		$\mathrm{TC}=+25^{\circ} \mathrm{C}$ (main)	4		500		500	$\mu \mathrm{F}$
		(dual)			200		200	$\mu \mathrm{F}$
Load FaultPower Dissipation ${ }^{3}$	P_{D}							
		Overload, TC $=+25^{\circ} \mathrm{C}^{5}$	1		8.5		8.5	W
		Short Circuit, TC $=+25^{\circ} \mathrm{C}$	1		8.5		8.5	W
Switching Frequency ${ }^{\text {² }}$	F_{s}		4	450	550	450	550	KHz
		$\mathrm{I}_{\text {OUT }}=2000 \mathrm{~mA}$ (main)						
		$\mathrm{I}_{\text {OUT }}= \pm 208 \mathrm{~mA}(\pm 12 \mathrm{~V})$						
		$\mathrm{I}_{\text {OUT }}= \pm 167 \mathrm{~mA}(\pm 15 \mathrm{~V})$						

For Notes to Specifications, refer to page 5

Specifications (Triple Output Models) - continued

TEST	SYMBOL	Condition $\begin{gathered} -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{IN}}=28 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0, \end{gathered}$ unless otherwise specified	Group A Subgroups	AHV2812T		AHV2815T		Units
				Min	Max	Min	Max	
DYNAMIC CHARACTERISTICS								
Step Load Changes								
		No Load ${ }_{135} 50 \%$	4	-400	+400	-400	+400	mVpk
Recovery ${ }^{9,10}$	$\mathrm{TT}_{\text {LOAD }}$	50\% Load ${ }_{135} 100 \%$	4		100		100	$\mu \mathrm{S}$
		No Load 33550% Load	4		2000		2000	$\mu \mathrm{S}$
		50% Load $_{335}$ No ILoad	4		5		5	ms
Step Line Changes								
Output Transient	$\mathrm{VOT}_{\text {LINE }}$	Input step 16 to 40 VDC	4		1200		1200	mVpk
		Input step 40 to 16 VDC	4		-1500		-1500	mVpk
Recovery ${ }^{7,10,11}$	$\mathrm{TT}_{\text {LINE }}$	Input step 16 to 40 VDC	4		4		4	$\mu \mathrm{s}$
		Input step 40 to 16 VDC	4		4		4	$\mu \mathrm{s}$
TURN-ON								
Overshoot ${ }^{1}$	VTon ${ }_{\text {os }}$	$\mathrm{I}_{\text {OUT }}=\mathrm{O}$ and $\pm 625 \mathrm{~mA}$	4		750		750	mVpk
Delay ${ }^{1,12}$	T on D	$\mathrm{I}_{\text {out }}=0$ and $\pm 625 \mathrm{~mA}$	4		15		15	ms
Load Fault Recovery ${ }^{7}$	$\mathrm{TR}_{\text {LF }}$		4		15		15	ms

Notes to Specifications (Triple Output Models)

1. Tested at each output.
2. Parameter guaranteed by line and load regulation tests.
3. At least 25 percent of the total power should be taken from the (+5 volt) main output.
4. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
5. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
8. Above $125^{\circ} \mathrm{C}$ case temperature, derate output power linearly to 0 at $135^{\circ} \mathrm{C}$ case.
9. Load step transition time between 2 and 10 microseconds.
10. Recovery time is measured from the initiation of the transient to where $\mathrm{V}_{\text {OUT }}$ has returned to within ± 1 percent of $\mathrm{V}_{\text {out }}$ at 50 percent load.
11. Input step transition time between 2 and 10 microseconds.
12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.

Notes to Specifications (Dual Output Models)

1. Tested at each output.
2. Parameter guaranteed by line and load regulation tests.
3. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
4. Total power at both outputs.
5. When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation.
6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
8. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
9. Load step transition time between 2 and 10 microseconds.
10. Recovery time is measured from the initiation of the transient to where $\mathrm{V}_{\text {OUT }}$ has returned to within ± 1 percent of $\mathrm{V}_{\text {out }}$ at 50 percent load.
11. Input step transition time between 2 and 10 microseconds.
12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
13. Above $125^{\circ} \mathrm{C}$ case temperature, derate output power linearly to 0 at $135^{\circ} \mathrm{C}$.

AHV28XX (Single Output) Block Diagram

AHV28XX (Dual Output) Block Diagram

AHV28XX (Triple Output) Block Diagram

International IOR Rectifier

AHV28XX Series

Application Information

Inhibit Function

Connecting the inhibit pin (Pin 2 of single and dual models, pin 8 of triple models) to the input return (pin 10) will cause the converter to shutdown and operate in a low power standby mode. Power consumption in this mode is calculated by multiplying Vin times the input current inhibited, typically 225 mW at Vin equal to 28 volts. The input current inhibited is relatively constant with changes in Vin. The open circuit inhibit pin voltage is typically 11.5 volts and can be conveniently driven by an open collector driver. An internal pull-up resistor enables the user to leave this pin floating if the inhibit function is not used in their particular application. All models use identical inhibit internal circuits. Forcing inhibit pin to any voltage between 0 and 6 volts will assure the converter is inhibited. The input current to this pin is $500 \mu \mathrm{~A}$ maximum at Vpin2 $=$ to 0 volts. The converter can be turned on by opening Pin 2 or forcing a voltage from 10 to 50 volts. Inhibit pin current from 10 to 50 volts is less than $\pm 50 \mu \mathrm{~A}$.

EMI Filter

An optional EMI filter (AFC461) will reduce the input ripple current to levels below the limits imposed by MIL-STD461 CEO3.

The output voltage of the AHV28XXS can be adjusted upward by connecting a resistor between the Output Adjust (Pin 3) and the Output Common (Pin 4) as shown in Table 1.

Table 1: Output Adjustment Resistor Values

Resistance (Ohms) Pin 3 to 4	Output Voltage Increase (\%)		
	5V	$\mathbf{1 2 V}$	$\mathbf{1 5 V}$
None	0	0	0
390 K	$+1.0 \%$	$+1.6 \%$	$+1.7 \%$
145 K	$+2.0 \%$	$+3.2 \%$	$+3.4 \%$
63 K	$+3.1 \%$	$+4.9 \%$	$+5.1 \%$
22 K	$+4.1 \%$	$+6.5 \%$	$+6.8 \%$
0	$+5.0 \%$	$+7.9 \%$	$+8.3 \%$

[^0]

Triple Output Models

Pin Designation

SIGNAL DESIGNATION			
PIN \#	SINGLE OUTPUT	DUAL OUTPUT	TRIPLE OUTPUT
1	Positive Input	Positive Input	Positive Input
2	Enable Input	Enable Input	+5 VDC Output
3	Output Adjust ${ }^{*}$	Positive Output	Output Common
4	Output Common	Output Common	Neg. Dual Output (12/15 VDC)
5	Positive Output	Negative Output	Pos. Dual Output (12/15 VDC)
6	N/C	N/C	N/C
7	N/C	N/C	Case Ground
8	Case Ground	Case Ground	Enable Input
9	N/C	N/C	N/C
10	Input Common	Input Common	Input Common

[^1]Available Screening Levels and Process Variations for AHV28XX Series

Requirement	MIL-STD-883 Method	No Suffix	ES Suffix	HB Suffix	CH Suffix
Temperature Range		$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Element Evaluation					MIL-PRF-38534
Internal Visual	2017	*	Yes	Yes	Yes
Temperature Cycle	1010		Cond B	Cond C	Cond C
Constant Acceleration	2001		500 g	Cond A	Cond A
Burn-in	1015	48 hrs @ $85^{\circ} \mathrm{C}$	48hrs @ $125^{\circ} \mathrm{C}$	160hrs @ $125^{\circ} \mathrm{C}$	160hrs @ $125^{\circ} \mathrm{C}$
Final Electrical (Group A)	MIL-PRF-38534 \& Specification	$25^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$-55,+25,+125^{\circ} \mathrm{C}$	$-55,+25,+125^{\circ} \mathrm{C}$
Seal, Fine \& Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
External Visual	2009	*	Yes	Yes	Yes

* Per Commercial Standards

Available Standard Military Drawing (SMD) Cross Reference

Standardized Military Drawing Pin	Vendor CAGE Code	Vendor Similar Pin
AHV2805SF/CH	52467	$5962-9177301$
AHV2812SF/CH	52467	$5962-9211201$
AHV2815SF/CH	52467	$5962-9211301$
AHV2812DF/CH	52467	$5962-9211401$
AHV2815DF/CH	52467	$5962-9177401$
AHV2812TF/CH	52467	$5962-9211501$
AHV2815TF/CH	52467	$5962-9211601$

International ISR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 3223331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 11/02

[^0]: * Output Adjust (Single Output Models Only)

[^1]: * Output Adjust (Single Output Models Only)

