
User’s Manual

Target Devices
   µµµµPD6133 Series
   µµµµPD6604 Series
   µµµµPD63 Series
   µµµµPD67 Series

AS6133 Ver.2.21 or Later

Assembler

For PC-9800 (MS-DOSTM Based)

For IBM PC/ATTM (PC DOSTM Based)

Document No.   U10115EJ3V0UM00 (3rd edition)
Date Published   August 2001 J  CP(K)

Printed in Japan
1999© 1995



2 User’s Manual  U10115EJ3V0UM

[MEMO]



User’s Manual  U10115EJ3V0UM 3

MS-DOS, Windows, and WindowsNT are either registered trademarks or trademarks of Microsoft Corporation

in the United States and/or other countries.

PC/AT and PC-DOS are trademarks of International Business Machines Corporation in the USA.

M8E  00. 4

The information in this document is current as of June, 2001. The information is subject to change 
without notice.  For actual design-in, refer to the latest publications of NEC's data sheets or data 
books, etc., for the most up-to-date specifications of NEC semiconductor products.  Not all products 
and/or types are available in every country.  Please check with an NEC sales representative for 
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior       
written consent of NEC.  NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of 
third parties by or arising from the use of NEC semiconductor products listed in this document or any other 
liability arising from the use of such products.  No license, express, implied or otherwise, is granted under any 
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative 
purposes in semiconductor product operation and application examples. The incorporation of these 
circuits, software and information in the design of customer's equipment shall be done under the full 
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third 
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers 
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely.  To minimize 
risks of damage to property or injury (including death) to persons arising from defects in NEC 
semiconductor products, customers must incorporate sufficient safety measures in their design, such as 
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific".  The "Specific" quality grade applies only to semiconductor products 
developed based on a customer-designated "quality assurance program" for a specific application.  The 
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular 
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's 
data sheets or data books, etc.  If customers wish to use NEC semiconductor products in applications not 
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness 
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•



4 User’s Manual  U10115EJ3V0UM

Regional Information

Some information contained in this document may vary from country to country.  Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors.  They will verify: 

•  Device availability

•  Ordering information

•  Product release schedule

•  Availability of related technical literature

•  Development environment specifications (for example, specifications for third-party tools and
   components, host computers, power plugs, AC supply voltages, and so forth)

•  Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
       800-366-9782
Fax: 408-588-6130
        800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. 
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.2



User’s Manual  U10115EJ3V0UM 5

Major Revisions in This Edition

Page Description

Deleting description "separate volume of SM6133" or "supplied with SM6133" because AS6133 assembler is

separated from SM6133 simulator

Changing supported debugger from NEC's SM6133 simulator to Naito Densei Machida Mfg's EB-6133

Throughout

Adding target device

PREFACE Changing description of 2.1  PC-9800 Series, 2.2  IBM PC/AT Compatibles, and 3.1  Assembler

p.45 Adding description to PART I, 3.4  Pseudo Instructions and Control Instructions

p.74 Adding PART II, 1.2  Supported Debugger

p.75 Adding 2.2  Install

p.77 Adding Table 3-1  Device Name That Can Be Described and Supported Device

p.87 Changing description of [Example] in 4.4.2  Starting the assembler

p.102 Adding description to 5.4.1  Error check for instructions exceeding the allowable number of bits

p.103 Changing description in 5.4.3  Check for the destination of a branch instruction (automatic check on

BANK0 and BANK1)

p.104 Adding description to 5.4.5  Check for input/output instructions for nonexisting ports

p.112 Adding APPENDIX A  CONSTRAINTS

p.113 Adding APPENDIX B  REVISION HISTORY

The mark  shows major revised points.



User’s Manual  U10115EJ3V0UM6

PREFACE

1.  The AS6133 assembler supports under the following 4-bit microcontrollers.

Series Name Supported Device

µPD6133 µPD6132, 6132A, 6133, 6134, 6135, 61P34B

µPD6604 µPD6603, 6604, 6605, 66P04B

µPD63 µPD62, 62A, 63, 63A, 64, 64A, 6P4B, 65, 6P5

µPD67 µPD67, 68, 69, 6P9

2.  The AS6133 assembler runs under the following environment:

2.1  PC-9800 Series

(1)  Supported PC-9800 series OS

MS-DOS Ver.5.0 or laterNote 1

WindowsTM 3.1/95/98Note 2

WindowsNTTM 4.0Note 2

Notes 1.  Versions 5.00 and 5.00A feature a task swap function.  However, this software does not support the

use of this function.

2. Can be used with MS-DOS prompt (Windows 3.1/95/98) or command prompt (WindowsNT).

The AS6133 assembler runs on MS-DOS for NEC's PC-9800 series or Windows, or Windows for PC-9800 series

supplied by Microsoft.

NEC will not be liable for unsatisfactory operation of this assembler under another commercially available version

of MS-DOS or Windows.

The CONFIG.SYS file must contain the following settings:

•  files = 15 (15 or more)

•  buffers = 10 (10 or more)



User’s Manual  U10115EJ3V0UM 7

2.2  IBM PC/AT Compatibles

(1) Supported IBM PC/AT compatibles

IBM PC/AT compatible personal computers on which the following OS runs:

(2)  Supported IBM PC/AT compatible OSs

MS-DOS Ver.6.0 or laterNote 1

PC DOS Ver.6.1 or laterNote 1

Windows 3.1/95/98Note 2

WindowsNT 4.0Note 2

Notes 1. Versions 6.0 and 6.1 feature a task swap function.  However, this software does not support the use

of this function.

2. Can be used with MS-DOS prompt (Windows 3.1/95/98) or command prompt (WindowsNT).

The AS6133 assembler runs on MS-DOS or Windows for IBM PC/AT compatibles supplied by Microsoft, or PC

DOS for IBM PC/AT compatibles supplied by IBM Japan.

NEC will not be liable for unsatisfactory operation of this assembler under another commercially available version

of MS-DOS, Windows, or PC DOS.

3.  Supply Media

3.1  Assembler

(1)  File name

AS6133.EXE

(2)  Floppy disk types

PC-9800 series:  High-density 3.5-inch floppy disk (3.5" 2HD)

IBM PC/AT compatibles:  High-density 3.5-inch floppy disk (3.5" 2HD)

4.  Symbols Used in This Manual
...   The preceding option may be repeated any number of times.

[  ]   The options enclosed in parentheses may be omitted.

{  }   Only one of the options in the braces must be selected.

∆ One single-byte space or TAB.

"  " Used to enclose a character or character string.

CR   Carriage return

LF   Line feed

TAB Horizontal tab

Represents any character string.

××× Represents any character string.

Represents any character string.

≡ Indicates corresponding contents.

< >   Represents data equivalent to the enclosed item.



User’s Manual  U10115EJ3V0UM8

5.  File Naming Rules

[drive-name:]   [\directory-name\...] file-name   [.extension]

drive-name: Drive in which the floppy disk containing the file is mounted.

Omitting the drive name causes the current drive to be assumed.

file-name: String of up to eight single-byte or four double-byte characters.

extension: String of up to three single-byte characters.



User’s Manual  U10115EJ3V0UM 9

CONTENTS

PART I  LANGUAGE

CHAPTER  1   OVERVIEW..........................................................................................................................15
1.1  Overview of the Assembler...........................................................................................................15

1.1.1  What is an assembler?.......................................................................................................................15

1.1.2  What is an absolute assembler? ........................................................................................................15

1.1.3  What is a relocatable assembler? ......................................................................................................16

1.1.4  Flow of system development using the µPD6133 Series ...................................................................16

1.1.5  Comparison of assemblers.................................................................................................................19

1.2  Functional Overview of µµµµPD6133 Series Assembler ..................................................................19
1.2.1  Creating a sequence file.....................................................................................................................19

1.2.2  Creating source module files..............................................................................................................19

1.2.3  Supported Japanese code .................................................................................................................20

1.2.4  External module definition reference function ....................................................................................20

1.2.5  Assembly............................................................................................................................................22

1.3  Before Starting Program Development........................................................................................24
1.3.1  Restrictions on symbols .....................................................................................................................24

1.3.2  Restrictions on pseudo instructions....................................................................................................24

1.3.3  Notes on using Japanese code ..........................................................................................................24

1.3.4  Setting the date and time of the host machine ...................................................................................25

1.3.5  Restrictions on the number of source modules ..................................................................................25

CHAPTER  2   CODING  SOURCE  PROGRAMS......................................................................................26
2.1  Basic Configuration of a Source Program ..................................................................................26
2.2  Configuration of a Statement........................................................................................................26
2.3  Tabulation Function.......................................................................................................................27
2.4  Character Sets................................................................................................................................28

2.4.1  Alphanumeric characters....................................................................................................................28

2.4.2  Digits ..................................................................................................................................................28

2.4.3  Special characters..............................................................................................................................29

2.5  Symbol Field...................................................................................................................................30
2.5.1  Rules governing the writing of symbols ..............................................................................................31

2.6  Mnemonic Field ..............................................................................................................................32
2.7  Operand Field .................................................................................................................................32

2.7.1  Operand field entry types ...................................................................................................................32

2.8  Comment Field ...............................................................................................................................35
2.9  Expressions and Operators ..........................................................................................................36

2.9.1  Expressions........................................................................................................................................36

2.9.2  Overview of operators ........................................................................................................................36

2.9.3  Arithmetic operators ...........................................................................................................................37

2.9.4  Logical operators................................................................................................................................38

2.9.5  Comparison operators........................................................................................................................39

2.9.6  Shift operators....................................................................................................................................40

2.9.7  Other operators ..................................................................................................................................41



User’s Manual  U10115EJ3V0UM10

CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS..................................... 42
3.1  Outline of Pseudo Instructions and Control Instructions......................................................... 42
3.2  Pseudo Instructions...................................................................................................................... 42
3.3  Control Instructions ...................................................................................................................... 44
3.4  Pseudo Instructions and Control Instructions........................................................................... 45
3.5  Macro Function.............................................................................................................................. 69

3.5.1  Macro definition and applicable range............................................................................................... 69

3.5.2  Macro reference ................................................................................................................................ 71

3.5.3  Macro expansion ............................................................................................................................... 72

PART II  OPERATION

CHAPTER  1   PRODUCT  OVERVIEW..................................................................................................... 74
1.1  Product Description ...................................................................................................................... 74
1.2  Supported Debugger..................................................................................................................... 74
1.3  System Configuration ................................................................................................................... 74

CHAPTER  2   BEFORE  EXECUTION ...................................................................................................... 75
2.1  Creating a Backup File.................................................................................................................. 75
2.2  Install .............................................................................................................................................. 75

CHAPTER  3   SEQUENCE  FILE .............................................................................................................. 76
3.1  Overview......................................................................................................................................... 76
3.2  Sequence File Format ................................................................................................................... 76

3.2.1  Overall format.................................................................................................................................... 76

3.2.2  Device name format .......................................................................................................................... 77

3.2.3  Assembly option format ..................................................................................................................... 78

3.2.4  Source file name format .................................................................................................................... 78

3.3  Example of a Sequence File Description .................................................................................... 79

CHAPTER  4   ASSEMBLER  FUNCTIONS .............................................................................................. 80
4.1  Overview......................................................................................................................................... 80
4.2  Assembly Input/Output Files........................................................................................................ 81
4.3  Assembler Functions.................................................................................................................... 82

4.3.1  Intermediate object module file output function ................................................................................. 82

4.3.2  Linkage function ................................................................................................................................ 82

4.3.3  PRO file output function..................................................................................................................... 82

4.3.4  Assembly time reduction function...................................................................................................... 82

4.3.5  Assembly list file output function ....................................................................................................... 84

4.3.6  Cross-reference list file output function ............................................................................................. 85

4.4  Assembler Start-Up Procedure.................................................................................................... 86
4.4.1  Input files needed when the assembler starts ................................................................................... 86

4.4.2  Starting the assembler....................................................................................................................... 86

4.4.3  Aborting assembly ............................................................................................................................. 87

4.5  Assembly Options......................................................................................................................... 88
4.5.1  Option to control EB-6133 emulator information output..................................................................... 89

4.5.2  Option to control object file output ..................................................................................................... 90

4.5.3  Option to control load module file (PRO file) output .......................................................................... 91



User’s Manual  U10115EJ3V0UM 11

4.5.4  Option to control assembly list file output ...........................................................................................92

4.5.5  Option to control cross-reference list file output .................................................................................93

4.5.6  Option to control the number of lines to be output on one list output page (ROW NO.) .....................94

4.5.7  Option to control the number of columns to be output on one list output line .....................................94

4.5.8  Option to control option information output.........................................................................................95

4.5.9  Tab control option ..............................................................................................................................95

4.5.10  Form feed control option ..................................................................................................................96

4.5.11  Option to control assembly-time variables........................................................................................96

4.5.12  Option to control a work drive...........................................................................................................97

4.5.13  Option to control list header output ..................................................................................................97

4.5.14  Help message display ......................................................................................................................98

CHAPTER  5   ASSEMBLY  OUTPUT  LISTS............................................................................................99
5.1  Types of Assembly Output Lists ..................................................................................................99
5.2  Controlling Each List Output Format.........................................................................................100
5.3  Header Output ..............................................................................................................................101
5.4  Assembler's Check Functions....................................................................................................102

5.4.1  Error check for instructions exceeding the allowable number of bits................................................102

5.4.2  Check to prevent a program crash ...................................................................................................102

5.4.3  Check for the destination of a branch instruction (automatic check on BANK0 and BANK1) ...........103

5.4.4  Check for output to an input-only port ..............................................................................................104

5.4.5  Check for input/output instructions for nonexisting ports..................................................................104

CHAPTER  6   ERROR  MESSAGES .......................................................................................................105
6.1  Errors Detected at Start-Up and Run Time................................................................................105

APPENDIX  A   CONSTRAINTS ...............................................................................................................112

APPENDIX  B   REVISION  HISTORY......................................................................................................113



User’s Manual  U10115EJ3V0UM12

LIST OF FIGURES

Figure No. Title Page

PART I  LANGUAGE

1-1 System Development Flow.............................................................................................................................17

1-2 Software Development Flow ..........................................................................................................................18

1-3 Creating Source Module Files ........................................................................................................................21

1-4 Creating Object Files......................................................................................................................................23

PART II  OPERATION

4-1 Processing Flow of the Assembly Time Reduction Function..........................................................................83

4-2 AS6133 Input/Output File Configuration.........................................................................................................85



User’s Manual  U10115EJ3V0UM 13

LIST OF TABLES

Table No. Title Page

PART I  LANGUAGE

1-1 Comparison of Assemblers ............................................................................................................................19

1-2 Pseudo Instructions Which Can Be Nested and Maximum Nesting Levels ...................................................24

2-1 Operator Priorities..........................................................................................................................................36

3-1 Pseudo Instructions and Control Instructions.................................................................................................45

PART II  OPERATION

3-1 Device Name That Can Be Described and Supported Device .......................................................................77

4-1 Assembly Options ..........................................................................................................................................88

5-1 Output Lists....................................................................................................................................................99



User’s Manual  U10115EJ3V0UM14

PART  I

LANGUAGE



User’s Manual  U10115EJ3V0UM 15

CHAPTER  1   OVERVIEW

1.1  Overview of the Assembler

1.1.1  What is an assembler?

A microcontroller can only interpret its so-called machine language, which consists entirely of 0s and 1s.  Machine

language is very complicated for humans to understand and essentially impossible to remember.  By assigning

symbolic (assembly) language instructions to machine language instructions, however, programs can be coded in

such a way that humans can more easily understand them.  An assembler is a program which translates this "human-

friendly" symbolic language, into the machine language of the microcontroller.

Processing 1: 

MOV  A,MEM1
RLZ  A
SCAF
JNC   Processing 2         

Assembly language 
(Symbolic language)

Assembler

1111111011100010
1111111011110011
1111101011110011
1110110111110001

Machine language

Assemblers can be classified as absolute assemblers or relocatable assemblers.

AS6133 is an absolute assembler.  Unlike conventional absolute assemblers, however, it allows split programming.

Thus, although it is actually an absolute assembler, AS6133 can be said to have characteristics similar to those of a

relocatable assembler.

1.1.2  What is an absolute assembler?

A machine language instruction consists of an instruction and data.  An instruction specifies an operation to be

performed by the microcontroller.  Data is the value(s) on which that operation is performed.

Data can include the constants and variables to be used to perform an arithmetic instruction.

An absolute assembler makes the addresses assigned to instructions and data absolute upon translating them into

machine language.  This means that addresses and data must be determined before the program is assembled.  The

information is passed to the assembler by the location counter control pseudo instruction called "ORG".

The machine language code created by the absolute assembler is stored in memory as is and executed by the

microcontroller.  The machine language code thus created is called an absolute object module.  On the other hand,

the source symbolic language code is called a source module.



PART  I   CHAPTER  1   OVERVIEW

16 User’s Manual  U10115EJ3V0UM

1.1.3  What is a relocatable assembler?

The absolute object module created by an absolute assembler has absolute data and addresses.  On the other

hand, an assembler which creates an object module which can be relocated to any address in memory is called a

relocatable assembler.  The machine language code created by a relocatable assembler is called a relocatable object

module.

A relocatable object module cannot be directly executed as a program by the microcontroller.  This is because

addresses and data are relative.  A program which translates a relocatable object module such that it can be executed

by the microcontroller is called a linker.

What is a linker?

A linker determines the location of one or more relocatable object modules created by a relocatable assembler,

resolves address references, and combines the modules into one.  It also assigns absolute values to those addresses

and data to which relative values were assigned.

The combination of modules produced by the linker is called a load module.  This load module cannot be directly

executed by the microcontroller.  It must, therefore, be translated into a form that can be executed by the

microcontroller.

1.1.4  Flow of system development using the µµµµPD6133 Series

Figure 1-1 shows the flow of system development using the µPD6133 Series.  Figure 1-2 shows the flow of

software development in detail.



PART  I   CHAPTER  1   OVERVIEW

User’s Manual  U10115EJ3V0UM 17

Figure 1-1.  System Development Flow

Product planning

System design

Finalization of specifications

Hardware development

Logic design 

(circuit/mechanism design)

Software development

Software design

Evaluation

End of development



PART  I   CHAPTER  1   OVERVIEW

18 User’s Manual  U10115EJ3V0UM

Figure 1-2.  Software Development Flow

Software development 

Preparation of 
program specifications

Preparation 
of flowchart

Coding

Assembly

Errors detected?

Debugging

System evaluation

OK?

Programs and equipment to be used 
(product names)

Editor   

Assembler (AS6133)

EB-6133 emulator

Yes

No

No

Yes



PART  I   CHAPTER  1   OVERVIEW

User’s Manual  U10115EJ3V0UM 19

1.1.5  Comparison of assemblers

Table 1-1 lists the features of absolute and relocatable assemblers.

Table 1-1.  Comparison of Assemblers

Absolute Assembler Relocatable Assembler

Assembly method Batch assembly

(AS6133 allows pseudo split assembly.)

Split assembly

  ↓
Link

Addresses on the assembly list Absolute Relative

Restrictions on operations

performed on variables in

the operand part

None Imposed by the linker.Variable

Local variable Cannot be defined.

(Can be defined for AS6133.)

Can be defined.

Others Because batch assembly is used,

partially modifying the source does not

reduce the assembly time.  (AS6133 can

realize a reduction, however, because it

allows pseudo split assembly.)

Address calculation is necessary during

debugging.  Because split assembly is

supported, module-by-module

programming by more than one person is

possible.

1.2  Functional Overview of µµµµPD6133 Series Assembler

1.2.1  Creating a sequence file

The µPD6133 series assembler (AS6133) is an absolute assembler.  Despite being an absolute assembler,

AS6133 supports module programming, one of the features of a relocatable assembler.  Unlike relocatable assembler

packages, however, AS6133 does not provide a linker program.  The features of a linker are, however, supported.

When programming source modules, a sequence file which describes the order in which the source module files

are to be linked is necessary.  The sequence file also specifies device names and assembly-time options, in addition

to the order in which the source module files are to be linked.

1.2.2  Creating source module files

When designing a program, it is generally divided into several subprograms, according to function.  If the functional

independence of the subprograms is high, the debugging of each subprogram will be easy.  This enhances the

development efficiency and will lead to better maintainability in the future.

A subprogram is a unit of coding and also acts as the unit of input to the assembler.  The unit of input to the

assembler is called a source module.

Once the coding of a source module has been completed, use an editor to write the module to a file.  The created

file is called a source module file.

When a source program is split into source modules, the order in which the source modules are to be linked must

be written in a sequence file.

Splitting into files using INCLUDE statements differs from the above-mentioned splitting into source modules.

More specifically, a file specified by an INCLUDE pseudo instruction can be said to be part of the source module

containing the INCLUDE pseudo instruction.



PART  I   CHAPTER  1   OVERVIEW

20 User’s Manual  U10115EJ3V0UM

1.2.3  Supported Japanese code

AS6133 can assemble source programs written in Japanese code (8-bit JIS code and shift JIS code).

Japanese code can be used not only in comment fields but also in symbol fields.

1.2.4  External module definition reference function

The PUBLIC and EXTRN pseudo instructions can be used to reference symbols defined in external modules.  A

symbol for which PUBLIC is declared can be referenced with the EXTRN declaration at any time.

The symbols defined in backward modules can be referenced at assembly time while those defined in forward

modules can be referenced at link time.



PART  I   CHAPTER  1   OVERVIEW

User’s Manual  U10115EJ3V0UM 21

Figure 1-3.  Creating Source Module Files

Source program Source module A

Writing to files (using editor)

Source module files

Source module B

END

Source module C

END

INCLUDE 'SUB.ASM'

END

SUB.ASM 

Source module D

END

Source module A

END



PART  I   CHAPTER  1   OVERVIEW

22 User’s Manual  U10115EJ3V0UM

1.2.5  Assembly

To assemble a source module, the following files are necessary:

•  Assembler (AS6133.EXE)

•  Source module file ( .ASM, ××××.ASM, etc.)

•  Sequence file ( .SEQ)

When starting AS6133, the output list can be controlled directly from the console or by specifying assembly options

in the sequence file.

If any errors are found in the assembly list, modify the source modules and repeat assembly until all errors have

been removed.

If the source program consists of modules, AS6133 creates intermediate object module files (.OBJ) at assembly.

These intermediate object module files are used when the source program is partially modified and re-assembled.

To reduce the assembly time, AS6133 re-assembles modified source modules only, using the already created

intermediate object module files for those source modules that have not been modified.  To check whether a source

module has been modified, the assembler compares the creation date and time of the source module file with that of

the intermediate object module file having the same name.  If the source module file is found to be newer, it is judged

to have been modified.  If, therefore, the intermediate object module file corresponding to a source module file is not

found, or if the source module file is older, the assembler automatically detects this and creates an intermediate object

module file at assembly.

The assembly time reduction function can reduce the assembly time considerably as the user proceeds with

debugging.



PART  I   CHAPTER  1   OVERVIEW

User’s Manual  U10115EJ3V0UM 23

Figure 1-4.  Creating Object Files

Source module files    

Assembly

List file 
Assembly list (.PRN) 
Cross-reference (.XRF)

Errors detected?

Modification of 
source module files

Modified 
source module files

Intermediate object module
                         files (.OBJ)

Object files (.PRO)

OK!

NO

YES

(AS6133)



PART  I   CHAPTER  1   OVERVIEW

24 User’s Manual  U10115EJ3V0UM

1.3  Before Starting Program Development

This section explains those items with which the user must be familiar to enable  efficient use of AS6133.

The subsequent sections provide a detailed explanation of the above.

1.3.1  Restrictions on symbols

(1) Restrictions on the number of symbols

Each source module can use a symbol table area of up to 64 KB.

With AS6133, one symbol can be defined using up to 253 characters (one byte per character).Note

The maximum number of symbols that can be used is as follows:

240 if all symbols are 253 characters long.

3,368 if all symbols are eight characters long.

Note Double-byte characters (shift JIS codes) consist of two bytes each.

(2) Symbols in a macro

Those symbols which are not declared as being global are handled as local symbols.

1.3.2  Restrictions on pseudo instructions

The MACRO, REPT, and IF statements can be nested to up to 40 levels deep.  When expanding pseudo

instructions in a pseudo instruction, care must be exercised to prevent the nesting level from exceeding 40.

In a macro, macro name references can be made but macro definitions cannot be created.

Table 1-2.  Pseudo Instructions Which Can Be Nested and Maximum Nesting Levels

Pseudo Instruction Which Can Be Nested Maximum Nesting Levels Total

REPT-EXITR-ENDR 8

IF-ELSE-ENDIF 40

MACRO-ENDM 40

40

INCLUDE 8 8Note

Note The INCLUDE statement can be nested independently of the above pseudo instructions.

1.3.3  Notes on using Japanese code

A source list can be created by using a Japanese editor.

The available character codes are 8-bit JIS (single-byte) codes and shift JIS (double-byte) codes.

Reserved words must be written using single-byte codes.

A double-byte space, colon, and semicolon must not be used to delimit symbol, mnemonic, and operand fields.

The single-byte and double-byte codes for characters are different.

For example, when a space is coded using a double-byte code, it is handled as a blank, not as a delimiter.



PART  I   CHAPTER  1   OVERVIEW

User’s Manual  U10115EJ3V0UM 25

1.3.4  Setting the date and time of the host machine

Always check the current date and time when starting MS-DOS on the host machine (PC-9800 series).

At assembly time, AS6133 compares the creation dates and times of the source module files with those of the

intermediate object module files having the same names.  As a result of this comparison, if an intermediate object

module file is found to be newer, the corresponding source module is not assembled.

If the time indicated by the clock of the host machine is subsequent to the creation date and time of a source

module file, changes made to the source module file may not take effect after assembly.

1.3.5  Restrictions on the number of source modules

AS6133 can assemble a source program consisting of up to 30 modules.

The source modules are handled as a single source program by describing the assembly order in a sequence file

(.SEQ).



User’s Manual  U10115EJ3V0UM26

CHAPTER  2   CODING  SOURCE  PROGRAMS

2.1  Basic Configuration of a Source Program

A source program consists of one or more source modules, as shown in Figure 1-3.  Each source module consists

of one or more statements.  The configuration of a statement is shown in Section 2.2.

No restrictions are imposed on the size of a source module.  This means that any number of statements can be

written.  A source program can consist of up to 30 source modules.

In a source program, instructions, pseudo instructions, and control instructions can be written at any location.  The

END pseudo instruction, however, can be written only at the end of each source module.

The END pseudo instruction need not be written in an include file to be read into a source module by the INCLUDE

pseudo instruction in the source module.

2.2  Configuration of a Statement

A source program in assembler language consists of statements.

A statement is written using the characters listed in Section 2.4.

When creating a source program using a text editor, each statement is terminated with a CR (carriage return) code

and an LF (line feed) code.  The assembler regards an LF code as being a statement terminator, but ignores a CR

code.

A statement consists of four fields:  symbol, mnemonic, operand, and comment, as shown below.

Each field must be delimited with a single-byte space ( ) (8-bit JIS code 20H), TAB code (09H), single-byte colon (:)

(3AH), or single-byte semicolon (;) (3BH).  Up to 256 characters can be written on one line.

The format of a statement is arbitrary.  The symbol, mnemonic, operand, and comment fields can start in any

columns provided that they appear in this order.  A statement containing only a symbol or comment field, as well as an

empty statement can also be written.

Symbol field ↑ Mnemonic field ↑ Operand field ↑ Comment field LF

<1> <2> <3>

<1> To enter a symbol in a symbol field, use a single-byte colon or blank (one or more single-byte spaces or TAB

code) as a delimiter.

Whether a colon or blank should be used depends on the instruction to be written in the mnemonic field.

<2> When an operand field is necessary, use a blank as a delimiter.

<3> When a comment is written in the comment field, use a single-byte semicolon as a delimiter.

<4> Any number of blanks can be inserted before and after a colon or semicolon.

In Example 1, a colon is used to delimit the symbol and mnemonic fields.  In Example 2, a blank is used.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 27

[Example 1]

AAA  :  MOV     A,#8H     ;  A=8H

[Example 2]

AAA  EQU  7

2.3  Tabulation Function

AS6133 provides a tabulation function to improve the readability of an assembly listing.  The tabulation function re-

arranges the symbol, mnemonic, operand, and comment fields in a source program so that they each begin in a

column that is a multiple of eight.

[Example]  Addition:

MOV     A,#8H

MOV     R01,A    ;R01=8H

↑ ↑ ↑

Columns that are multiples of eight (column numbers equal to the tab number, multiplied by eight)

To use the tabulation function, insert a TAB (Horizontal TAB, 09H) code in the source program before each of the

mnemonic and operand fields and before the single-byte semicolon (;) indicating the start of a comment field.

Symbol Mnemonic Operand ; Comment

↑
"TAB"

↑
"TAB"

↑
"TAB"

AS6133 supports an assembly option which allows the user to select whether the TAB code (09H) should be sent

to the printer or replaced by single-byte spaces, depending on the printer being used.

This option is provided to support printers which cannot recognize TAB codes.

In this way, AS6133 allows the user to specify that a TAB code should be converted to single-byte spaces before

being sent to the printer.

Remark  It is recommended that the TAB code be used to make effective use of the disk.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

28 User’s Manual  U10115EJ3V0UM

2.4  Character Sets

The 8-bit JIS code set and the shift JIS code set must be used to write statements.

Restrictions are imposed on the characters that can be used for symbols.  For details, see Section 2.5.1.

Reserved words can be used either single-byte alphabetic upper or lower cases.  Symbols defined by the user,

however, are case sensitive.

[Example 1]

AAA     EQU  3

Aaa     EQU  5
AAA and AAa are regarded as being different symbols.

[Example 2]

MOV     MEM1,#1

Mov     mem1,#3
MEM1 and mem1 are different symbols.  MEM1 is set to 1 and mem1 to 3.
The reserved word MOV,  however, is interpreted as being identical to Mov.

2.4.1  Alphanumeric characters

Single-byte alphabetic characters and arabic numerals are collectively referred to as alphanumeric characters.

2.4.2  Digits

Binary digits: The two digits 0 and 1 are referred to as binary digits.

Octal digits: The eight digits 0, 1, 2, 3, 4, 5, 6, and 7 are referred to as octal digits.

Decimal digits: The ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are referred to as decimal digits.

Hexadecimal digits: The sixteen digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F are referred to as hexadecimal

digits.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 29

2.4.3  Special characters

The following special characters are single-byte characters.  The equivalent double-byte characters cannot be

used as special characters; they are interpreted as is.

These special characters (except the LF code) can be used to represent their normal meanings in character strings

(character constants) and in comment fields.

Single-byte character Name Main use

Space Field delimiter

? Question mark Equivalent to an alphabetic character.

@ Unit price symbol Specifies indirect addressing.

_ Underscore Equivalent to an alphabetic character.

, Comma Operand delimiter

. Period Bit segment operator

+ Plus Plus sign or addition operator

− Minus Minus sign or subtraction operator

* Asterisk Multiplication operator

/ Slash Division operator

( Opening parenthesis

) Closing parenthesis
Change operation order.

$ Dollar sign Value of the location counter

= Equal sign Comparison operator

; Semicolon Indicates the start of a comment.

;; Double semicolon Indicates the start of a comment in a macro.

: Colon Label delimiter

' Quotation mark Indicates the start or end of a character constant.

<

>
Comparison operators

# Specifies immediate data.

& Ampersand Specifies the concatenation of character strings in a

macro.

% Expression operator Used immediately before a macro parameter to indicate

the transfer of a value.

TAB code Horizontal tab Equivalent to eight spaces.

LF code Line feed Statement terminator

CR code Carriage return Normally ignored by the assembler.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

30 User’s Manual  U10115EJ3V0UM

2.5  Symbol Field

When data or an address to be used in an instruction or pseudo instruction is written using a numeric value or

numeric expression, AS6133 recognizes this as being an error.  To use data or an address, use a name which

enables its easy recognition.  The name assigned to data or an address is called a symbol.

A symbol can be entered in a symbol field.  This is referred to as defining a symbol.

A symbol to be used in a program can appear anywhere in the program provided that it is declared before use.

The scope of a symbol depends on where it is declared.

Symbols having the same name cannot be used in a module.  They can, however, be used in different modules

because symbols are basically used locally within a module.  To use a symbol globally in more than one module, the

symbol must be declared as being public.

Symbols are classified as labels and names according to their purpose and how they are defined.

(1) Names

The symbols defined in the EQU and SET pseudo instructions are called names.  Numeric data or addresses

can be assigned to names.  These names can be used in a program instead of numeric data and addresses.

Thus, numeric data can be used indirectly by assigning it a name.

[Example]

DATA1     EQU    8H The name DATA1 is defined for numeric data 8H.

(2) Labels

Labels are symbols which can be assigned to the address of an instruction (mnemonic) or to the ORG, DW,

or DT pseudo instruction.  A label is used to reference the program memory address (value of the location

counter) assigned to the instruction or pseudo instruction to which the label is assigned.

Thus, a label can be written at the top address of a routine, with a name indicating the processing of the

routine, thus causing a branch from another routine to the routine or to reference the routine.

[Example]

LOOP:MOV     A,@R0H

.

.

.

     JMP     LOOP

In this example, LOOP is a label.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 31

2.5.1  Rules governing the writing of symbols

The following rules are applied to writing symbols:

(1) Symbols can use 8-bit JIS codes and shift JIS codes other than the single-byte special characters (except for

the underscore and question mark).

A symbol cannot begin with a single-byte digit.

(2) A symbol can be between 1 and 253 characters in length (for single-byte characters).  If a symbol exceeds

253 characters in length, an S error (syntax) error occurs.  Each shift JIS code character consists of two

bytes.

(3)  A label must be terminated with a single-byte colon (:) (3AH).  (A single-byte space or TAB code may be

inserted between the label and the colon.)

(4)  When using the EQU, SET, or MACRO pseudo instruction, a name must be entered in the symbol field.  The

name must be terminated with a single-byte space or TAB code.

(5) A symbol cannot be defined more than once.  Otherwise, an S error (symbol duplication error) occurs.  This

does not apply to the symbolsNote defined in the SET pseudo instruction or to those defined in macros that are

not declared as being global.

If not declared public, symbols having identical names can be used in different modules; the system regards

them as being different symbols.

(6) Reserved words cannot be defined as symbols.  It is possible to define symbols containing reserved words.

(7) Symbols are case-sensitive.

[Example 1]

Valid Invalid

FIF4: 1F4F:...............Begins with a digit.

LABEL: LABEL .............Does not end with a colon (for a label).

HERE: HE RE:.............A blank is embedded in the symbol.

ANH: ANL: .................Instructions cannot be used as symbols.

ENDX: END: .................Pseudo instructions cannot be used as symbols.

[Example 2]

ABC EQU 3

XYZ EQU ABC

The same data "3" is assigned to both ABC and XYZ.

Note The value of the symbol defined in a SET pseudo instruction can be changed.  To change the value,

use a SET pseudo instruction.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

32 User’s Manual  U10115EJ3V0UM

2.6  Mnemonic Field

Enter an instruction, pseudo instruction, or control instruction in the mnemonic field.

For an instruction requiring an operand, a blank (one or more single-byte spaces or a TAB code) is required to

delimit the mnemonic field from the operand field.

[Example] 

Valid Invalid

JMP LOOP JMPLOOP.......... A blank is not inserted between the mnemonic and operand fields.

RET RE T ................ A blank is inserted in the mnemonic field.

SCAF SCA .................. The SCA instruction is not supported by the µPD6133.

2.7  Operand Field

In the operand field, enter the data (operand) necessary to execute the instruction.  Some instructions do not

require operands while others require one or two operands.

When two operands are required, delimit the operands with a comma ",".

A blank is required between the mnemonic and operand fields.

2.7.1  Operand field entry types

(1) Constant

Constants include numeric constants that consist of digits, or character constants that consist of characters.

Numeric constants include binary, octal, decimal and hexadecimal constants, all consisting of single-byte

digits.

(a) Binary constant

A single-byte character "B" must be added to the end of a binary string.

(b) Octal constant

A single-byte "O" or "Q" must be added to the end of an octal string.

(c) Decimal constant

A single-byte "D" must be added to the end of a decimal string.  The "D" can be omitted.

(d) Hexadecimal constant

A single-byte "H" must be added to the end of a hexadecimal string.  If a constant begins with a single-

byte character other than 0 to 9, a "0" must be added to the beginning of the constant.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 33

(e)  Character constant

A character constant is a string of 8-bit JIS character codes (except the LF code) and shift JIS character

codes, enclosed in single-byte quotation marks (').

With AS6133, character constants can be used in the TITLE and INCLUDE pseudo instructions only.

As a result of assembly, the characters enclosed in single-byte quotation marks are converted to 8-bit JIS

or shift JIS codes.

To use a single-byte quotation mark in a character constant, it must be enclosed in quotation marks.

No operations can be performed on character constants.

[Example]

'A' .................................. 41H

(Single byte)

' ' ................................. 8260H

(Double byte)

'''' ............................... 27H

(Single byte) When two quotation marks are written, one single-byte quotation mark is

reserved as a constant.

'A''' .............................. 4127H

(Single byte)

' ' .................................. 20H

(Single-byte space)

'<' .................................. 203CH

' ' .................................. 93FAH

' '....................... 93FA967B93648B43H

(2) $ (location counter)

"$" indicates the value of the location counter.  In other words, it indicates the program memory address of

the instruction for which the "$" is used.

[Example]

Address

 101 MOV A,R11

 102 LOOP: INC A

 103 JNC $-1

 105 JMP $+20H

The "$" in "JNC $−1" indicates address 103H.  Consequently, $−1 indicates address 102H.  The $ in "JMP

$+20H" indicates address 105H.

"JNC $−1" is equivalent to "JNC LOOP" where LOOP is a label.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

34 User’s Manual  U10115EJ3V0UM

(3) Symbol

When a symbol is entered in an operand field, the value assigned to the symbol (label or name) is assumed

as the operand value.

[Example 1]

A1: JC A2

:

A2: ANL A,R10

[Example 2]

VALUE EQU 1H

MOV A,#VALUE

"MOV A,#VALUE" is equivalent to "MOV A,#1H".

(4) Expression

An expression (character or numeric expression) consists of constants, $, and symbols that are combined

with operators.  There are seventeen operators (+, −, *, /, MOD, NOT, AND, OR, XOR, SHR, SHL, EQ or =,

NE or <>, GT or >, GE or >=, LT or <, and LE or <=).  The priorities of these operators are predetermined.

For details, see Section 2.9.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 35

2.8  Comment Field

A comment field begins with a single-byte semicolon (;), followed by the comment itself.  Comments assist the

programmer in understanding the program when he or she refers to the assembly listing.  While they are displayed on

the assembly listing, the assembler ignores them.

A comment can be written all 8-bit JIS codes (except the LF code) and shift JIS codes.

When consecutive semicolons (;;) are used in a macro definition, the assembler handles the comment as a

comment within the macro definition.  It does not print the comment during macro expansion.

A comment must be terminated with an LF code.  If a comment is too long to fit on one line, start the next line with

a semicolon (;).



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

36 User’s Manual  U10115EJ3V0UM

2.9  Expressions and Operators

2.9.1  Expressions

An expression (character or numeric expression) consists of constants, $, symbols, and operators in an operand

field.

2.9.2  Overview of operators

(1) Overview

The operators of AS6133 assembly language are divided into five types.  The priorities of these operators are

predetermined.

1. Arithmetic operators

+, −, *, /, and MOD

2. Logical operators

OR, AND, XOR, and NOT

3. Comparison operators

EQ, NE, LT, LE, GT, and GE

(or =, <>, <, <=, >, and >=)

4. Shift operators

SHR and SHL

5. Others

( and ) (operation order specifiers)

& (replacement operator)

(2) Operator priorities

The priorities of the operators are predetermined as listed in the table.  Enclosing an operator in ( and ) allows

the order in which operations are performed to be changed.

When multiple operators having the same priority exist in a single expression, they are executed in order,

from left to right.

In the table below, the highest priority is indicated by 1.

Table 2-1.  Operator Priorities

Priority Operators

1 (  )  (Operation order specifiers)

2 *, /, MOD, SHL, SHR

3 +, −

4 EQ, NE, LT, LE, GT, GE, =, <>, <, <=, >, >=

5 NOT

6 AND

7 OR, XOR



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 37

2.9.3  Arithmetic operators

(1) Addition operator (+)

Adds operands together.

[Example] Address Symbol Mnemonic Operand

0010 START: JMP $+6

The JMP instruction causes a jump to address 16H.

(2) Subtraction operator (−−−−)

Subtracts one operand from another.

[Example] Address Symbol Mnemonic Operand

0020 BACK: JMP BACK−−−−6

The JMP instruction causes a jump to address 1AH.

(3) Multiplication operator (*)

Multiplies operands.

[Example] Address Symbol Mnemonic Operand

A6: MOV A,#(2*3)

The MOV instruction causes 6 (2*3) to be loaded into Acc.

(4) Division operator (/)

Divides one operand by another.  The remainder, if any, is truncated.

[Example] Address Symbol Mnemonic Operand

A5: MOV A,#(256/50)

The MOV instruction causes 5 (256/50) to be loaded into Acc.

(5) MOD operator

Finds the remainder resulting from an operand division.

[Example] Address Symbol Mnemonic Operand

A5: MOV A,#MOD

The MOV instruction causes 6 (remainder of division 256/50) to be loaded into Acc.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

38 User’s Manual  U10115EJ3V0UM

2.9.4  Logical operators

(1) OR operator

Finds the OR of operands.

[Example] Address Symbol Mnemonic Operand

MDFY1: MOV A,#(0AH OR 5H)

The MOV instruction causes 0FH to be loaded into Acc.

(2) AND operator

Finds the AND of operands.

[Example] Address Symbol Mnemonic Operand

MASK: MOV A,#(1AH AND 0FH)

The MOV instruction causes 0AH to be loaded into Acc.

(3) XOR operator

Finds the exclusive OR of operands.

[Example] Address Symbol Mnemonic Operand

MDFY2: MOV A,#(9AH XOR 9DH)

The MOV instruction causes 7H to be loaded into Acc.

(4)  NOT operator

Finds the 1's complement of the value of an operand.

[Example] Address Symbol Mnemonic Operand

COMPL: MOV A,#(NOT 3H AND 0FH)

The MOV instruction causes 0CH (when NOT 3H; 0FFFCH, AND 0FH) to be loaded into Acc.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 39

2.9.5  Comparison operators

(1) EQ (EQual) operator

Returns 0FFFFH if the values on the right and left sides are equal; otherwise, returns 0.

"EQ" can be replaced by "=".

[Example] Address Symbol Mnemonic Operand

COMP1: MOV A,#(ONE EQ 1)

The MOV instruction causes 0FH to be loaded into Acc if ONE is 1 and 0 if ONE is other than 1.

(2) NE (Not Equal) operator

Returns 0FFFFH if the value on the left side is not equal to that on the right side; otherwise, returns 0.

"NE" can be replaced by "<>".

[Example] Address Symbol Mnemonic Operand

COMP2: MOV A,#(ONE NE 1)

The MOV instruction causes 0FH to be loaded into Acc if ONE is not 1; loads 0 if ONE is 1.

(3) LT (Less Than) operator

Returns 0FFFFH if the value on the left side is less than that on the right side; otherwise, returns 0.

"LT" can be replaced by "<".

[Example] Address Symbol Mnemonic Operand

COMP3: MOV A,#(MINI LT 5)

The MOV instruction causes 0FH to be loaded into Acc if MINI is less than 5, or 0 if MINI is equal to or

greater than 5.

(4) LE (Less Than or Equal) operator

Returns 0FFFFH if the value on the left side is equal to or less than that on the right side; otherwise,

returns 0.

"LE" can be replaced by "<=".

[Example] Address Symbol Mnemonic Operand

COMP4: MOV A,#(MINI LE 5)

The MOV instruction causes 0FH to be loaded into Acc if MINI is equal to or less than 5, or 0 if MINI is

greater than 5.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

40 User’s Manual  U10115EJ3V0UM

(5) GT (Greater Than) operator

Returns 0FFFFH if the value on the left side is greater than that on the right side; otherwise, returns 0.

"GT" can be replaced by ">".

[Example] Address Symbol Mnemonic Operand

COMP5: MOV A,#(MAX GT 5)

The MOV instruction causes 0FH to be loaded into Acc if MAX is greater than 5, or 0 if MAX is equal to or

less than 5.

(6) GE (Greater Than or Equal) operator

Returns 0FFFFH if the value on the left side is equal to or greater than that on the right side; otherwise,

returns 0.

"GE" can be replaced by ">=".

[Example] Address Symbol Mnemonic Operand

COMP6: MOV A,#(MAX GE 5)

The MOV instruction causes 0FH to be loaded into Acc if MAX is equal to or greater than 5, or 0 if MAX is

less than 5.

2.9.6  Shift operators

(1) SHR (Shift Right) operator

Shifts the value on the left side to the right by the value on the right side.

As a result of the shift, the MSB is set to 0.

[Example] Address Symbol Mnemonic Operand

01FA FIELD: MOV A,#($ SHR 5)

$ (address:  01FAH) is shifted to the right by five bits.

As a result, 0DH is loaded into Acc.

(2) SHL (Shift Left) operator

Shifts the value on the left side to the left by the value on the right side.

As a result of the shift, the LSB is set to 0.

[Example] Address Symbol Mnemonic Operand

0021 FLY: JMP FLY SHL 2

FLY (address:  0021H) is shifted to the left by two bits.

As a result, control jumps to address 0084H.



PART  I   CHAPTER  2   CODING  SOURCE  PROGRAMS

User’s Manual  U10115EJ3V0UM 41

2.9.7  Other operators

(1) ( ) (operation order specifiers)

Indicate that the operation(s) enclosed within the parentheses should be performed first, irrespective of the

operator priorities.

The parentheses ( ) can be nested to up to 16 levels.

[Example] 5+8−6*2/4 = 10

5+(8−6)*2/4 = 6

(5+8−6)*2/4 = 3

2*(0FH−(0BH AND (0AH OR 0FH))) = 8

2*0FH−0BH AND 0AH OR 0FH  = 0FH

(2) & (replacement) operator

Used in a macro definition statement to concatenate the characters on the two sides of & during macro

expansion.  The & itself is replaced with a NULL code.

[Example] MOVI MACRO X

MOV A,#&X

ENDM

MOVI 1

MOV A,#1



User’s Manual  U10115EJ3V0UM42

CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

3.1  Outline of Pseudo Instructions and Control Instructions

The basic function of the assembler is to convert instructions into machine language.  Pseudo instructions and

control instructions are provided to enhance the assembler's ease of use, as well as the readability of the output

listings.

Pseudo instructions and control instructions are not converted to machine language.  Instead, they are used to

direct the operation of the assembler.  An exception to this, however, is the built-in macro pseudo instructions which

are converted to machine language.

3.2  Pseudo Instructions

AS6133 mnemonic field can contain a pseudo instruction.

(1)  Location counter control pseudo instruction

••••  ORG

(2)  Symbol definition pseudo instruction

Symbol definition pseudo instructions are used to define an arbitrary numeric, data memory address, flag, or

label.

••••  EQU

••••  SET

Values assigned by symbol definition pseudo instructions cannot be changed.  However, a symbol that has

already been defined by a SET pseudo instruction can be changed by using another SET pseudo instruction.

Therefore, the SET pseudo instruction is used to define a variable that is significant only at assembly time.

(3) External definition and external reference pseudo instructions

External definition and external reference pseudo instructions define and reference a symbol that is used by

more than one module.

••••  PUBLIC-BELOW-ENDP (external definition pseudo instruction)

••••  EXTRN (external reference pseudo instruction)

(4)  Data definition pseudo instruction

Data definition pseudo instructions are used to define data in a table area.

••••  DW: Defines 8-bit data.

••••  DT: Defines 10-bit timer table data.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 43

(5)  Conditional assembly pseudo instruction

The effective use of the conditional assembly pseudo instruction enables efficient programming and,

furthermore, allows a library of source programs to be created.

••••  IF-ELSE-ENDIF

(6)  Repetitive pseudo instruction

The effective use of the repetitive pseudo instruction enables efficient programming.

••••  REPT-(EXITR)-ENDR

(7)  Macro definition pseudo instruction

When a particular routine is used several times within a single program, a subroutine is usually used to save

the number of program steps.  When there are several similar processing routines having different parameters,

such that a subroutine cannot be applied, a macro function is used to improve programming efficiency.

The macro definition pseudo instruction is used to define such a macro.  See Section 3.5 for details.

••••  MACRO-ENDM

(8) Global declaration pseudo instruction for symbols in a macro

••••  GLOBAL

(9) Assembly termination pseudo instruction

The assembly termination pseudo instruction indicates the end of a source (program) module.

••••  END

(10)  Mask option specification pseudo instruction

••••  OPTION-ENDOP



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

44 User’s Manual  U10115EJ3V0UM

3.3  Control Instructions

With AS6133, a mnemonic field can contain a control instruction.  Control instructions are not converted to machine

language.  Instead, they control the output list format and source input after assembly.

Control instructions are valid only within the modules in which they are used.

(1)  Output list control instructions

Output list control instructions are used to enhance the readability of the assembly listing.

••••  TITLE: Prints a title for the assembly listing.

••••  EJECT: Invokes a page change.

(2)  Source input control instruction

When a program (source module) file becomes overly large, such that the programmer decides to divide the

file, the source input control instruction can be used.  The source input control instruction can also be used to

enable the use of a previously created program (a program in a library).

••••  INCLUDE

A file can be referenced by using the INCLUDE control instruction with the relevant file name specified.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 45

3.4  Pseudo Instructions and Control Instructions

This section explains each of the pseudo instructions and control instructions listed below.

Table 3-1.  Pseudo Instructions and Control Instructions

Instruction Name Page

ORG Location counter control pseudo instruction p.46

EQU p.47

SET

Symbol definition pseudo instruction

p.48

PUBLIC-BELOW-ENDP External definition pseudo instruction p.49

EXTRN External reference pseudo instruction p.51

DW p.52

DT

Data definition pseudo instruction

p.53

IF-ELSE-ENDIF Conditional assembly pseudo instruction p.54

REPT-(EXITR)-ENDR Repetitive pseudo instruction p.55, p.56

MACRO-ENDM Macro definition pseudo instruction p.57

GLOBAL Global declaration pseudo instruction for symbols in a macro p.59

END Assembly termination pseudo instruction p.60

OPTION-ENDOP p.61

USEPOC/NOUSEPOC p.62

Pseudo instructions

USECAP/NOUSECAP

Mask option specification pseudo instruction

p.63

TITLE p.64

EJECT

Output list control instructions

p.65

Control instructions

INCLUDE Source input control instruction p.66



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

46 User’s Manual  U10115EJ3V0UM

ORG ORIGIN ORG

Symbol Mnemonic Operand Comment

[label:] ORG <expression> [;comment]

[Function]

Sets a value in the location counter.

[Usage]

(1)  The ORG pseudo instruction specifies the start address of program memory.  Code an ORG pseudo

instruction at the beginning of each segment.

(2)  The ORG pseudo instruction specifies the start address of a table area.  When this instruction is specified, any

change made before the table area address has no effect on the table area address.

[Explanation]

(1)  Before a symbol can be used as an expression in the operand field, that symbol must have been defined.

(2)  Unless an address is specified with the ORG pseudo instruction at the beginning of a program, the assembler

assigns address 0000 to the location counter.

(3) If the address value specified with an ORG pseudo instruction is smaller than the previous location counter

value, an A error (address specification error) occurs.  If such an error occurs, the evaluation value coded in

the operand is ignored, with the consecutive value next to the location counter value that existed immediately

before the ORG instruction being assumed.

(4)  The previous location counter value is assigned to the label added to the ORG pseudo instruction.

[Example]

015D INC A

015E RET

0200 STRT: ORG 200H

0200 MOV A,#1

Label STRT is assigned 15FH.  The operand of the ORG pseudo instruction is 200H, so the MOV instruction is

assigned to address 200H.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 47

EQU EQUATE EQU

Symbol Mnemonic Operand Comment

name EQU <expression> [;comment]

[Function]

Assigns the value of the expression specified in the operand to the name coded in the symbol field.

[Usage]

This instruction is used to define a data memory address.

[Explanation]

(1)  Before a symbol can be coded in the operand field, the symbol must first be defined.

(2) Delimit the symbol field, mnemonic field, and operand field with a blank.

(3)  If the symbol or mnemonic field contains an error, the specified name is not registered.  Accordingly, a

statement referencing that name becomes invalid.  If the operand contains an error, 0 is assigned to the name.

(4)  For a name defined using the EQU pseudo instruction, redefinition within the module in which the name is

defined is not possible.  If an attempt is made to redefine the name, an S error (duplicate symbol definition)

occurs.

(5)  When a name is defined using the EQU pseudo instruction, the name can be referenced by an instruction prior

to the definition only when the name is specified in the operand of the instruction.

(6)  The defined expression value is not converted to µPD6133 code; the value is assigned as is.

[Example]

P3_INIT EQU 12H

P3_MOD EQU P3_INIT

;

OUT P3,#P3_MOD



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

48 User’s Manual  U10115EJ3V0UM

SET SET SET

Symbol Mnemonic Operand Comment

name SET <expression> [;comment]

[Function]

Assigns the value of the expression coded in the operand field to the name in the symbol field.

In the operand field, memory name R0 to RF,  R10 to R1F, or R00 to R0F can be coded in addition to an expression.

[Usage]

This instruction is used to set a formal parameter for a conditional assembly pseudo instruction (IF-ELSE-ENDIF)

or repetitive operation pseudo instructions (REPT-ENDR, EXITR).

[Explanation]

(1)  Delimit the symbol field, mnemonic field, and operand field with a blank.

(2)  If the symbol or mnemonic field contains an error, the specified name is not registered.  Accordingly, any

statement referencing that name becomes invalid.  If an operand contains an error, 0 is assigned to the name.

(3)  For a name defined with a SET pseudo instruction, a different value can be redefined.  The value defined with

a SET pseudo instruction remains valid until the next SET pseudo instruction is encountered.

(4)  When a name is defined using the SET pseudo instruction, the name can be referenced by an instruction prior

to the definition only when the name is specified in the operand of the instruction.

(5)  The defined expression value is not converted to µPD6133 code; the value is assigned as is.

[Example]

IMMED SET 5

ANL A,#IMMED ;IMMED=5

;

IMMED SET 6

ANL A,#IMMED ;IMMED=6



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 49

PUBLIC PUBLIC PUBLIC
BELOW BELOW BELOW
ENDP END PUBLIC ENDP

Format 1

Symbol Mnemonic Operand Comment

[label:] PUBLIC <symbol-group> [;comment]

Format 2

Symbol Mnemonic Operand Comment

[label:]
[name

PUBLIC
EQU
ENDP

BELOW
<expression (EQU-type)>]

[;comment]
[;comment]

[Function]

The external definition pseudo instruction can be coded in either of two formats.

Format 1 is used to declare that symbols coded in the operand field are referenced by other modules.

Format 2 is used to declare that symbols defined in the block enclosed between PUBLIC BELOW and ENDP are

referenced by other modules.

[Usage]

The external definition pseudo instruction declares symbols as being referenced by other modules.

[Explanation]

(1)  An external definition pseudo instruction can be coded anywhere within a source program.

(2)  When format 1 is used, the symbols specified for public declaration in a module must be defined using a

symbol definition pseudo instruction within the same module.  If a symbol coded in the external definition

pseudo instruction of format 1 is not defined in the same module, an S error (Undefined Symbol) occurs.

(3)  For format 2, if the block enclosed between PUBLIC BELOW and ENDP contains an instruction other than the

symbol definition pseudo instructions, an S error (Syntax Error) occurs.

(4)  Each statement is terminated by an LF code.  If there are too many symbols to fit on one line, declare PUBLIC

again on the next line.

(5)  If the ENDP corresponding to PUBLIC BELOW is missing, a P error (No ENDP Statement) occurs at the END

pseudo instruction.

(6) If a symbol declared as PUBLIC is not referenced by any external module, a warning (Unreference Symbol)

occurs at link time.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

50 User’s Manual  U10115EJ3V0UM

PUBLIC PUBLIC PUBLIC
BELOW BELOW BELOW
ENDP END PUBLIC ENDP

 [Example]

PUBLIC VAL1,VAL2

 .

 .

 .

VAL1 EQU 1

VAL2 EQU 2

 .

 .

 .

PUBLIC BELOW

VAL3 EQU 3

VAL4 EQU 4

ENDP



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 51

EXTRN EXTERN EXTRN

Symbol Mnemonic Operand Comment

[label:] EXTRN <symbol-group> [;comment]

[Function]

Declares that the symbols coded in the operand field (for which public declaration is performed in other modules)

are referenced in the module.

[Usage]

When symbols declared as public symbols in other modules are needed in a module, the EXTRN pseudo

instruction can be used to enable the use of these symbols in the module.

[Explanation]

(1)  In a module, symbols declared with the EXTRN pseudo instruction cannot be referenced before EXTRN has

been specified.

(2)  If a symbol for which EXTRN declaration is performed in a module is defined in the same module, an S error

(Symbol Multi Defined) occurs.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

52 User’s Manual  U10115EJ3V0UM

DW DEFINE WORD DW

Symbol Mnemonic Operand Comment

[label:] DW <expression> [;comment]

[Function]

Sets an expression or characters coded in the operand field in the location indicated by the current location counter

value (program memory address) as 8-bit object code.

[Usage]

This instruction is used to define 8-bit data in a table area.

[Explanation]

(1)  A single expression that can be represented by eight bits can be coded for <expression>.  If the value of the

expression exceeds 10 bits, a V error (invalid value) occurs.  If either bit 8 or 9 is 1, a warning message is

generated.  (In this case, bits 8 and 9 of the object code are set to 0.)  If more than one expression is coded in

the operand field, an O error (the number of operands is invalid) occurs.

(2)  If an undefined symbol is coded in the operand field, an S error (Undefined Symbol) occurs.

(3) If the expression coded in the operand field is invalid, NOP (E0E0H) is generated as the object code.

Caution  The DW instruction is used to reference table areas other than the timer table area (MOV

T,@R0).  To perform timer table area reference, use the DT instruction.

[Example]

E. LOC. OBJ. M I SOURCE STATEMENT

E2E0 DW 20H

E4E0 DW 340H ;<1>

In <1>, a warning is generated, and a value for which bits 8 and 9 are 0 is set as the object code.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 53

DT DEFINE TIMER DT

Symbol Mnemonic Operand Comment

[label:] DT <expression> [;comment]

[Function]

Sets the expression or characters coded in the operand field in the location indicated by the current location

counter value (program memory address), as a 10-bit object code.

[Usage]

This instruction is used to define timer data in a table area.

[Explanation]

(1)  A single expression that can be represented using 10 bits can be coded for <expression>.  If the value of the

expression exceeds 11 bits, a V error (invalid value) occurs.  If more than one expression is coded in the

operand field, an O error (invalid number of operands) occurs.

(2)  If an undefined symbol is coded in the operand field, an S error (Undefined Symbol) occurs.

(3)  If the expression coded in the operand field is invalid, NOP (E0E0H) is generated as the object code.

Caution  The DT instruction causes object code conversion to reference a timer table area (MOV

T,@R0).  Therefore, never use the DT instruction for an ordinary table reference instruction.

(For ordinary table reference instructions, use the DW instruction.)

[Example]

E. LOC. OBJ. M I SOURCE STATEMENT

;** TIME DATA **

F8F7 DT 21FH ;CARRY ON

F1F7 DT 05FH ;CARRY OFF



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

54 User’s Manual  U10115EJ3V0UM

IF IF IF
ELSE ELSE ELSE
ENDIF ENDIF ENDIF

Symbol Mnemonic Operand Comment

[label:]
[statement

[statement

IF

[ELSE]

ENDIF

<expression> [;comment]
                 ]
[;comment]
                 ]
[;comment]

[Function]

If the value of the operand field of the IF statement is other than 0 (false), the statements enclosed between IF and

ELSE are to be assembled.  The statements between ELSE and ENDIF are not assembled.

If the evaluation value of the operand field of the IF statement is 0 (false), the statements enclosed between IF and

ELSE are not assembled.  The statements between ELSE and ENDIF are assembled, however.

[Usage]

This instruction is used in an arbitrary routine in a program to select the statements to be expanded according to

the use condition of the routine.

[Explanation]

(1)  All the statements between an IF and the corresponding ENDIF are defined as an IF-ENDIF block.

(2)  ELSE is optional.  It need not be specified.  When ELSE is specified, however, it can be used only once for an

IF-ENDIF block.  If ELSE is specified more than once for a single IF-ENDIF block, an S error (syntax error)

occurs for the second and subsequent ELSEs.

(3)  Before a symbol can be coded in the operand field of the IF statement, the symbol must first be defined.

(4) Up to 40 levels of nesting, including macro reference statements and REPT statements, are possible.

(5)  The ELSE and ENDIF statements cannot have any label.

[Example]

IF ZZZ0 EQ  0

NOP

HALT #3H

ELSE

NOP

HALT #ZZZ0

ENDIF



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 55

REPT REPEAT REPT
ENDR END REPEAT ENDR

Symbol Mnemonic Operand Comment

[label:]
[statement

[statement

REPT

[EXITR]

ENDR

<expression (EQU-type)> [;comment]
                 ]
[;comment]
                 ]
[;comment]

[Function]

Expands the statement enclosed between REPT and ENDR as many times as the value of <expression (EQU-

type)>.

If EXITR is encountered between REPT and ENDR, expansion is terminated, and assembly is performed from the

statement next to ENDR.

[Usage]

This instruction is used to repeat the same statement.

To disable the repetitive pseudo instruction temporarily or interrupt it during debugging, insert EXITR.

[Explanation]

(1)  Up to eight levels of nesting are possible.  When macro reference statements and IF statements are included,

up to 40 levels are possible.

(2)  Before a symbol can be coded in <expression (EQU-type)>, the symbol must have already been defined.  If

the coded symbol is not defined or was defined on a previous page, an S error (Undefined Symbol) occurs.

(3)  A symbol in the operand of a pseudo instruction specified in the REPT-ENDR block must have already been

defined.  If the symbol is defined after the appearance of the symbol, or if the symbol is not defined, an S error

(Undefined Symbol) occurs.

(4)  If the ENDR corresponding to REPT is missing, a P error (No ENDR Statement) occurs for the END pseudo

instruction which appears at the end of the module.

[Example]

REPT 3 ;Repeat the DW 0 instruction three times.

DW 0

ENDP



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

56 User’s Manual  U10115EJ3V0UM

EXITR EXIT REPEAT EXITR

Symbol Mnemonic Operand Comment

EXITR [;comment]

[Function]

EXITR in the REPT statement ends expansion, and performs assembly from the statement subsequent to ENDR.

[Explanation]

(1)  The EXITR pseudo instruction can be used only between REPT and ENDR.

(2) If EXITR is coded outside the REPT-ENDR block, a P error (invalid EXITR statement) occurs.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 57

MACRO MACRO MACRO
ENDM END MACRO ENDM

Symbol Mnemonic Operand Comment

name MACRO

[statements (macro-body)

ENDM

<formal-parameter-group> [;comment]
                 ]

[Function]

Assigns a macro name, indicated by name, to the sequence of statements (macro body) enclosed between

MACRO and ENDM.

The name is used as the definition name at macro reference time.

[Usage]

This instruction is used for macro definition.

[Explanation]

(1)  Macro body

The macro body consists of symbols, instructions, pseudo instructions (except MACRO and ENDM),

comments, and other macro statements including their macro bodies.

(2)  Formal parameter group

• Up to 32 formal parameters, delimited by a comma (,), can be coded, using up to 253 characters.

• Formal parameters can be used only within a macro body.

• Actual parameters are assigned to the formal parameters, coded in the macro body, when the macro is

referenced.

• Formal parameters can be coded in the symbol field, mnemonic field, and operand field.

(3)  When two semicolons (;;) appear successively in the macro body, the subsequent character string is treated as

a comment in the macro.  It is not expanded when the macro is referenced.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

58 User’s Manual  U10115EJ3V0UM

MACRO MACRO MACRO
ENDM END MACRO ENDM

[Example 1]   Macro having no parameter

ADDR01 MACRO ;Macro definition

MOV A,R01

INC A

MOV R01,A

ENDM

[Example 2]   Macro having a parameter

ADDRNO MACRO RNO ;Macro definition

MOV A,RNO

INC A

MOV RNO,A ;;RNO+1

ENDM

ADDRNO R10 ;Macro reference

     ↓   (Expansion)
MOV A,R10

INC A

MOV R10,A

[Description]

As shown in the above example, when a parameter is coded in the operand field of a macro, the parameter can be

replaced by the parameter specified at the time of macro reference.  A parameter in a macro definition statement is

called a formal parameter.

R10 is assigned to formal parameter RNO.

Two successive semicolons (;;) are followed by a comment in the macro.  This comment is not expanded at the

time of reference.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 59

GLOBAL GLOBAL GLOBAL

Symbol Mnemonic Operand Comment

[label:] GROBAL <symbol-group> [;comment]

[Function]

Declares symbols used in a macro as symbols that can be referenced outside the macro.

[Usage]

Before symbols used in a macro can be used outside that macro, the GLOBAL pseudo instruction must first be

specified.

[Explanation]

(1)  The GLOBAL pseudo instruction can be used only inside a macro definition (within the block enclosed between

MACRO and ENDM).  If a GLOBAL pseudo instruction is used outside a macro definition, an M error (Invalid

Mnemonic) occurs.

(2)  The global declaration for a symbol must be coded before that symbol is defined.  If the GLOBAL declaration is

performed after the symbol is defined, an S error (Symbol Multi Defined) occurs.

(3)  When a symbol is declared as a global symbol in a source module program, the symbol can be used in the

same source module program.

(4)  One or more symbol names can be specified in the operand field of the GLOBAL pseudo instruction, provided

they fit on one line (255 characters maximum).

If the length of a statement exceeds 255 characters, an S error (Syntax Error) occurs, and the statement is

ignored.

[Example]

OBJ. M I SOURCE STATEMENT

STMAC MACRO ;Macro definition

GLOBAL SYMA ;Global declaration

SYMA SET 00H

0000 DW SYMA

ENDM

;

STMAC ;Macro reference

;

0000 DW SYMA ;A local symbol is referenced outside the macro.

[Description]

When global declaration is performed for a symbol in a macro, the symbol value can be used as is upon the

completion of macro expansion.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

60 User’s Manual  U10115EJ3V0UM

END END END

Symbol Mnemonic Operand Comment

[label:] END

[Function]

Directs the assembler to terminate the source (program) module.

[Usage]

Code this instruction on the last line of a source (program) module.

[Explanation]

(1) If the END pseudo instruction is not followed by the LF code (8-bit JIS code:  0AH), an error occurs.

When the screen editor is used for programming, modules can be cataloged even if the LF code is missing.

Therefore, be particularly careful not to forget the LF code.

(2) If END is followed by a code other than the CR/LF code, such as a comment, a warning message is generated.

Such a statement is ignored.

(3) If a source file does not end with an END statement, or if the END statement is not followed by a valid code,

such as a CR code, preventing the assembler from recognizing the END pseudo instruction, a P error (END

statement missing) occurs.  If such an error occurs, the assembler generates an object file, assuming the END

statement to be placed at the end of the file.

[Example]

.

.

.

.

    END

[Description]

In the above example, the END pseudo instruction is placed in the last line of a source program module.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 61

OPTION OPTION OPTION
ENDOP ENDOP ENDOP

Symbol Mnemonic Operand Comment

[label:] OPTION
ENDOP

mask-option-pseudo-instruction [;comment]

[Function]

The block enclosed between OPTION and ENDOP is called a mask option definition block.  In the mask option

definition block, a mask option pseudo instruction can be coded.  The mask option pseudo instruction varies

depending on the device.

[Explanation]

(1) The OPTION pseudo instruction must be terminated by the ENDOP pseudo instruction.  If an END pseudo

instruction appears between the OPTION and ENDOP pseudo instructions, a P error (No OPTION Directive)

occurs.

(2) If an instruction that generates an object code is placed between the OPTION and ENDOP pseudo

instructions, a warning is generated.  In this case, the object code for the instruction between the OPTION and

ENDOP pseudo instructions is not generated.

(3) An OPTION and ENDOP pseudo instruction pair can be coded only once within a source program.  If they are

coded more than once, a P error (Duplicated OPTION Directive) occurs for the second OPTION pseudo

instruction.  At this time, the object code between OPTION and ENDOP is not generated.

The OPTION and ENDOP pseudo instructions cannot be coded separately in two different modules.

(4) If a source program for a device which requires a mask option contains no OPTION pseudo instruction, an O

error (Not Found Mask Option Block) occurs at link time.

[Example]

OPTION ;Include a low-voltage detection circuit.

USEPOC

ENDOP



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

62 User’s Manual  U10115EJ3V0UM

USEPOC USEPOC USEPOC
NOUSEPOC NOUSEPOC NOUSEPOC

Symbol Mnemonic Operand Comment

USEPOC
NOUSEPOC

[;comment]

[Function]

Specifies whether a low-voltage detection circuit is used by mask option.

USEPOC specifies that the low-voltage detection circuit is used, and NOUSEPOC specifies that the circuit is not

used.

[Caution]

An error occurs unless either USEPOC or NOUSEPOC is specified.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 63

USECAP USECAP USECAP
NOUSECAP NOUSECAP NOUSECAP

Symbol Mnemonic Operand Comment

USECAP
NOUSECAP

[;comment]

[Function]

Specifies whether a capacitor for oscillator is used by mask option.

USECAP specifies that the capacitor is used, and NOUSECAP specifies that the capacitor is not used.

[Caution]

An error occurs unless either USECAP or NOUSECAP is specified.

This option can be specified with the products D67, D68, and D69.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

64 User’s Manual  U10115EJ3V0UM

TITLE TITLE TITLE

Symbol Mnemonic Operand Comment

[label:] TITLE 'character-string' [;comment]

[Function]

Causes a page feed in the assembly listing, and outputs the character string specified in the operand field in the

header line of the assembly listing.

[Usage]

This instruction is used to print a title for the assembly listing and to enhance readability.

[Explanation]

(1)  Up to 78 characters (8-bit JIS code) can be coded as the character string.  If the character string is longer than

78 characters, an I error (invalid data length) occurs.

(2)  When the TITLE control instruction appears, the assembler performs a page feed, then prints the specified title

(characters) as the header.  When the TITLE control instruction appears in the first line, however, the

assembler does not perform a page feed.  When a page feed is performed by the TITLE control instruction, the

TITLE control instruction is output on the first line of a new page.

(3)  If a character string is not enclosed in quotation marks ('), an S error (syntax error) occurs.

[Example]

Source program listing

.

.

.

         TITLE 'SUBROUTINE'

.

.

.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 65

EJECT EJECT EJECT

Symbol Mnemonic Operand Comment

[label:] EJECT [;comment]

[Function]

Causes a page feed in the assembly listing.

[Usage]

This instruction is used to change the page at the beginning of a new routine.  When a page feed is performed, the

readability of the assembly listing is enhanced.

[Explanation]

(1)  When an EJECT control instruction appears, the assembler performs a page feed.

(2)  When a page feed is performed by the EJECT control statement, the EJECT control statement is printed on

the page before the page feed.

[Example]

Source program listing

 .

 .

JMP ABC

EJECT

DEF:

 .

 .



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

66 User’s Manual  U10115EJ3V0UM

INCLUDE INCLUDE INCLUDE

Symbol Mnemonic Operand Comment

[label:] INCLUDE 'file-name' [;comment]

(For details of the file naming conventions, see "Preface.")

[Function]

Reads a source program specified by file name, and processes it as part of the source program.

[Usage]

This instruction is used to include another split file.

[Explanation]

(1)  A source module specified by INCLUDE can contain another INCLUDE statement.  Up to eight levels of

INCLUDE nesting is possible.  If the nesting is performed to more than eight levels, a nest overflow error

occurs.

(2)  The file specified by the INCLUDE control statement must end with the EOF statement.  If EOF is not

specified, a warning is generated.

(3) If no extension is specified for the file name, the extension is assumed to be ASM.

(4)  The file connected by the INCLUDE control instruction is not a split module.  Therefore, the symbols in the

original source program can be referenced as is.

(5)  If a file name is not enclosed in quotation marks ('), an S error (syntax error) occurs, and this specification is

ignored.

(6)  A path name can be used as the file name.  (Up to 64 characters can be coded as a file name.)

(7)  If the file specified by file name does not exist, an F error (the include file cannot be opened) occurs.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 67

INCLUDE INCLUDE INCLUDE

[Example 1]

Source program

.

.

.

INCLUDE 'SUB1.ASM'

.

.

.

INCLUDE 'SUB2.ASM'

.

.

.

    END

SUB1.ASM

     .

     .

     .

     .

SUB2.ASM

     .

     .

     .

     .



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

68 User’s Manual  U10115EJ3V0UM

INCLUDE INCLUDE INCLUDE

[Example 2]

Source module A

 INCLUDE 'MACROFILE.ASM'

.

.

.

    END

Source module B

 INCLUDE 'MACROFILE.ASM'

.

.

.

    END

Up to 16 INCLUDE files can be coded in one source module.

The total length of the INCLUDE file names coded in one source module must not exceed 255 characters.

Caution  When the /HOST option is specified, a source file name can contain neither the drive name nor

directory name.

MACROFILE.ASM

MAC1 MACRO A1,A2

  .

  .

  .

ENDM

MAC2 MACRO B1,B2

  .

  .

  .

ENDM

  .

  .

  .

[Description]

Only macros that are used in multiple modules are placed in one file.  Then, the file is included by using the

INCLUDE control statement.  The macros can be shared by source modules without having to use the PUBLIC and

EXTRN pseudo instructions.  When the PUBLIC and EXTRN pseudo instructions are used, however, the names of

the macros used must be declared in each module.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 69

3.5  Macro Function

When a particular routine is used several times within a single program, a subroutine is generally used to save the

number of program steps.  When similar processing routines but with different parameters exist, and a subroutine

cannot be applied, a macro function is used to enable efficient programming.

3.5.1  Macro definition and applicable range

(1)  Macro definition

To define a macro, use the macro definition pseudo instruction (MACRO, ENDM).

When a macro is defined, formal parameters can be used.

See Table 3-1 for details of the macro definition pseudo instruction.

(2)  Applicable range of macros

Two types of symbols are defined in a macro:  local symbols that can be used only within the macro, and

global symbols that can be used both in the macro and in other routines.

To use symbols as global symbols, perform global declaration in the macro by using the GLOBAL pseudo

instruction.  Symbols that are not declared as global symbols are handled as local symbols and can be used

only within the macro.  See Table 3-1 for details of the GLOBAL pseudo instruction.

When a macro is used, program readability can be improved by assigning an easily remembered name to a

sequence of blocks that represents the procedure performed by those blocks.  In addition, the macro can be

used in much the same way as a library.  To do this, create a separate file containing macro definition

statements only.  Then, specify the INCLUDE statement at the beginning of a source program to read the

contents of the file.

•••• Local symbols

Symbols defined in a macro are assumed to be local symbols unless declared otherwise.  Local symbols

can be used only within the macro in which they are defined.  In this case, macro reference statements in

the macro and INCLUDE statement in the macro are also included.  Therefore, even when the same

symbol name as that of a local symbol in a macro is defined outside the macro, or when a particular macro

is referenced more than once, such that similar statements are generated, the assembler does not regard

them as a duplicate definition.

••••  Global symbols

A symbol defined in a macro sometimes needs to be referenced from outside of that macro.  To do this, the

symbol must be declared as a global symbol to enable the symbol to be referenced from any statement in

the module in which the symbol is used.  (See Table 3-1 for an explanation of the global declaration

method and an example of its use.)

Note, however, that when a symbol defined by other than the SET pseudo instruction references a macro

declared as being global in a fixed manner more than once, such that a sequence of statements is

generated, a duplicate definition error occurs for that symbol.

If a value is defined for a symbol with the SET pseudo instruction outside a macro, and the same symbol is

set inside the macro, the symbol is treated as a local symbol in the macro.  Then, that symbol has no

relationship with the symbol having the same name but which is outside the macro.  When the symbol

outside the macro needs to be assigned a value in the macro, global declaration is required.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

70 User’s Manual  U10115EJ3V0UM

(3)  Using a macro

The use of a macro requires that definition and reference be performed.  Assigning a macro name to a

sequence of instructions and pseudo instructions is referred to as macro definition.

[Example 1]

ADDR01 MACRO ;Macro definition

MOV A,R01

INC A

MOV R01,A

ENDM

In the above example, macro name ADDR01 is assigned to the following three instructions:

MOV A,R01

INC A

MO R01,A

An arbitrary macro name can be specified.  However, the specified macro name must be neither an existing

symbol name nor a reserved word.

When a macro is defined in a module, it can be used from that module any number of times after being

defined.

Specifying a macro name to use the contents of the macro definition is referred to as macro reference.

Code a macro reference statement in the mnemonic field.

When a macro is referenced, the assembler expands the instructions and pseudo instructions assigned to the

macro in the order in which they are defined.  This is referred to as macro expansion.

[Example 2]

ADDR01 ;Macro reference

    ↓  (Expansion)
MOV A,R01

INC A

MOV R01,A

The following lists the macro-related pseudo instructions:

MACRO-ENDM

GLOBAL

REPT-EXITR-ENDR



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

User’s Manual  U10115EJ3V0UM 71

3.5.2  Macro reference

[Function]

A macro body defined with the MACRO and ENDM statements is referenced.

[Format]

Symbol Mnemonic Operand Comment

[label:] name <actual-parameter-group> [;comment]

[Explanation]

(1)  As the name, specify the macro name coded in the symbol field of the MACRO statement.  The name must be

defined before it can be referenced.

(2)  The following five forms can be coded as actual parameters.  They are evaluated as 16-bit data.

(a)  Expression

(b)  Character constant (8-bit JIS code or shifted 8 JIS code string, enclosed in quotation marks)

(c)  Space or blank (no coding, comma only)

(d)  Symbol

(e)  Constant

(3)  Formal parameters are replaced by actual parameters on a one-to-one basis in the order in which they are

coded, starting from the left.  If the number of actual parameters exceeds the number of formal parameters, an

O error (Operand count error) occurs.

If the number of actual parameters is smaller than the number of formal parameters, a NULL code is assigned

to the remaining formal parameters for which no corresponding actual parameters exist.  In this case, no error

occurs at macro reference time.  However, an error caused by the NULL code may occur at macro expansion.

(4)  When a blank, comma, quotation mark, semicolon, or tab is coded as an actual parameter, it must be enclosed

in quotation marks so that it can be handled as a character string.

(5)  A macro body can contain macro reference statements.  Up to 40 levels of nesting, including repetitive pseudo

instructions, macro reference statements, and IF statements, is possible.  If the nesting depth exceeds 40

levels, an N error (Nesting overflow) occurs, and the illegal nesting is not assembled.  Alternatively, an M error

(Macro area overflow) occurs, and the macro is not expanded.

[Example]

ADMAC 2,5

ADMAC is a macro name defined with a macro definition pseudo instruction, and 2 and 5 are actual parameters

required when ADMAC is referenced.



PART  I   CHAPTER  3   PSEUDO  INSTRUCTIONS  AND  CONTROL  INSTRUCTIONS

72 User’s Manual  U10115EJ3V0UM

3.5.3  Macro expansion

The assembly of source programs using macros consists of the following steps:

<1> When a macro definition is encountered, the macro body is stored in an internal memory area of the

assembler as is (macro registration).

<2>  When a macro reference is found, the symbol table is searched for the corresponding macro body, after

which the macro body is inserted in the macro name position.

<3>  The expanded program is assembled.  When two successive semicolons (;;) appear in a macro body, the

portion between ;; and the end of that line is regarded as a comment, such that that portion is not expanded

at macro reference.

[Explanation]

(1)  Macro expansion is performed in path 1 of the module assembly phase.

(2)  Before a symbol defined outside a macro can be referenced by the operand of a pseudo instruction coded in

the macro, the symbol must be defined prior to the macro reference.  If the symbol is not defined or is defined

after the macro reference, an S error (Symbol undefined) occurs.

[Example]

HTIMER MACRO TIMEVAL,HALTVAL

MOV T,#TIMEVAL

HALT #HALTVAL

ENDM

HTIMER 100H,0101B

<1>:  A macro named HTIMER is defined.

TIMEVAL and HALTVAL are formal parameters.

<2>:  A macro named HTIMER is referenced.

100H and 0101B are actual parameters.  They correspond to formal parameters TIMEVAL and HALTVAL,

respectively.

As a result of the reference to HTIMER, expansion is performed as follows:

MOV  T,#100H

HALT  #0101B

<1>

<2>



User’s Manual  U10115EJ3V0UM 73

PART  II

OPERATION



User’s Manual  U10115EJ3V0UM74

CHAPTER  1   PRODUCT  OVERVIEW

1.1  Product Description

Program Name File Name File Type

Assembler AS6133.EXE Command file

The command file is the first file to be read into memory when program execution begins.

1.2  Supported Debugger

Use the following debugger when using the AS6133 assembler.  NEC’s SM6133 V1.02 and V1.06 cannot be used.

Manufacturer: Naito Densei Machida Mfg.

Product name: EB-6133 emulator

1.3  System Configuration

This section describes the operating environment necessary to run AS6133.

(1) Host machine

See "Preface" for the personal computers on which this assembler can run.

(2) Operating system

See "Preface" for the operating systems on which this assembler can run.

(3) User memory size

512 KB or larger

(4) Files necessary to run AS6133

1. Source file (××××.ASM)

This is a file of a source program to be assembled.

2. Sequence file (××××.SEQ)

This is a file of information necessary to specify a device file name, assembly options, and a source file

name at the start of the assembler.

When more than one source module file is to be assembled, it is necessary to specify the source file names

in the sequence file beforehand.

3. MS-DOS environment file (CONFIG.SYS)

Setting: files = 15 (15 or more)

buffers = 10 (10 or more)



User’s Manual  U10115EJ3V0UM 75

CHAPTER  2   BEFORE  EXECUTION

2.1  Creating a Backup File

Before using AS6133, create its backup copy by copying the contents of the original assembler disk to a work disk.

This is to prepare for disruption of the contents of the floppy disk or the disk itself.

Keep the original disk in a safe place.

Procedure to create a backup file

1. Start MS-DOS.

2. Insert the MS-DOS system disk into drive A, and a new floppy disk into drive B.

3. Format the new floppy disk in drive B using the FORMAT command and copy the system to it.

A>FORMAT B:/S  ↵ 
A>

4. Remove the MS-DOS system disk from drive A, and insert the AS6133 original disk into drive A.  Enter the

COPY command to transfer AS6133.EXE from the disk in drive A to the disk in drive B.

A>COPY A:*.* B:/V  ↵   

A>

5. All the contents of the disk in drive A have been transferred to the disk in drive B.

A>DIR B:/W  ↵ 
    AS6133.EXE

A>

2.2  Install

(1) Copy the file (AS6133.EXE) in the supplied medium to the install destination.

For example, if the supplied medium is set in floppy disk drive A: and the install destination is C:\nectools\bin,

execute the copy command as follows:

X> copy A:*.*  C:\nectools\bin

(2) Add the directory at the install destination to environmental variable PATH.

In the above example, add the following line to AUTOEXEC.BAT.

PATH  C:\nectools\bin;%PATH%



User’s Manual  U10115EJ3V0UM76

                 CHAPTER  3   SEQUENCE  FILE

3.1  Overview

When starting the assembler and assembling a program, it is necessary to specify the target device file, source

module file, and assembly options.Note  (This information is generically called an assembly condition.)

The assembly condition is specified in a sequence file.

Using a sequence file makes it possible to specify many assembly conditions under one sequence file name.

During debugging, source module files can be deleted or added simply by changing the contents of the sequence

file.

Effective use of a sequence file can make debugging efficient, as described above.

Note  An assembly option specifies, for example, whether to output an assembly listing.  See Section 4.5 for

details.

3.2  Sequence File Format

The sequence file is created using an editor or the COPY command.

The file extension of the sequence file must always be ".SEQ".

3.2.1  Overall format

[;comment]

device-name [;comment] ; <1>
/option[/option/option/.../.../......] [;comment] ; <2>
source-file-name [;comment]

. .

. . <3>

. .
source-file-name [;comment]

[Description]

(1) Specify a device name at <1>.

(2) Specify assembly options at <2>.  Only one assembly option can be placed between two adjacent slashes (/).

To specify more than one assembly option, write them in succession and separate them with a slash.  If two

or more lines are used to specify assembly options, each line must begin with a slash.

Assembly options specified at <2> are effective when any source file is assembled.

(3) Specify a source module file at <3>.

(4) In the sequence file, begin a comment with a semicolon (;) in the same way as in the source program.  A

comment can be placed anywhere in the sequence file.

(5) The device name, assembly options, and source file name must be specified in the stated order.  Otherwise,

an error is detected.



PART  II   CHAPTER  3   SEQUENCE  FILE

User’s Manual  U10115EJ3V0UM 77

3.2.2  Device name format

[;comment]
  device-name [;comment]

[Function]

The device name of the product that is the target of assembly is specified.

[Description]

(1) Usually, the sequence file should begin with a device name.  However, a comment can precede the device

name.

(2) No file extension is used.  If an unspecified device name is used, the following error is detected during

assembly, and assembly is aborted.

NOT FOUND DEVICE STATEMENT

If a device name is written in a place where it should not be, an error will be detected during assembly.

(3) Table 3-1 shows the correspondence between device names that can be described in the sequence file and

devices.

Table 3-1.  Device Name That Can Be Described and Supported Device

Device Name Supported Device

D6133 µPD6133

D6134 µPD6134

D6135 µPD6135

D6604 µPD6604

D6605 µPD6605

D63 µPD63

D63A µPD63A

D64 µPD64

D64A µPD64A

D62 µPD62

D62A µPD62A

D65 µPD65

D6132 µPD6132

D6132A µPD6132

D67 µPD67

D68 µPD68

D69 µPD69

Caution Use the device name of the corresponding ROM version device when using the µµµµPD61P34B,

66P04B, 6P4B, 6P5, or 6P9.



PART  II   CHAPTER  3   SEQUENCE  FILE

78 User’s Manual  U10115EJ3V0UM

[Example]

When the µPD6133 is the target product

D6133 ; µPD6133

Note Leave out "µP" from the product name.

3.2.3  Assembly option format

[/option] [/option] [/......] [/option]
[/option] [/......] [/option] [;comment]

[Function]

Assembly options are specified.

[Description]

(1) Usually, the specification of assembly options should begin on a line immediately after the device name file.

However, a comment can precede the specification of assembly options.

(2) Each assembly option must be prefixed with a slash (/).

(3) To specify more than one assembly option, separate them with a slash.  One or more space characters are

allowed between two assembly options.

(4) Assembly options may be written over more than one line.  Each line must end with a pair of CR/LF

characters, and each continuation line must begin with a slash.

(5) If mutually exclusive assembly options are specified, the last one to appear is effective.

(6) Assembly options can be omitted.

(7) See Section 4.5 for details of assembly options.

If an assembly option is specified in a place where it should not be, an error is detected during assembly.

3.2.4  Source file name format

source-file-name  [;comment]
source-file-name  [;comment]

:
source-file-name  [;comment]

[Function]

The name of a source file to be assembled is specified.

[Description]

More than one source file name cannot be specified on one line.

Caution  If the /HOST option is specified, neither a drive name nor a directory name can be specified in a

source file name.



PART  II   CHAPTER  3   SEQUENCE  FILE

User’s Manual  U10115EJ3V0UM 79

3.3  Example of a Sequence File Description

An example of describing a sequence file (SAMPLE.SEQ) is given below.

;DEVICE NAME

D6134 ; <1>
;OPTION

/HOST <2>
/WORK=B:

;SOURCE MODULE

INIT.ASM

MAIN.ASM

SUB1.ASM <3>
SUB2.ASM

DATA.TBL

[Description]

<1> is the name of a device that is the target of assembly.

<2> is the specification of assembly options.

<3> is a source module to be assembled.

A sequence file can be created using either an editor running on MS-DOS or the COPY command (MS-DOS

system command).

The COPY command may be sufficient if the sequence file to be created is small.  However, if it is necessary to

correct a sequence file or create a large sequence file, an editor will be more convenient.

Caution  If the /HOST option is specified, neither a drive name nor a directory name can be specified in a

source file name.



User’s Manual  U10115EJ3V0UM80

CHAPTER  4   ASSEMBLER  FUNCTIONS

4.1  Overview

AS6133 reads a specified source module file and creates files such as an object file and assembly list file from the

statements in the source module file.

AS6133 uses a two-pass assembly method.  In the first pass, a symbol table is created, and mnemonics are

converted to machine words.  Symbols are left undefined, but an area is reserved for them.

In the second pass, the symbol area reserved in the first pass is allocated to the machine words.  After the second

pass ends, an intermediate object module file is created.  When the intermediate object module file is created,

address information about branches extending over more than one module file has not been resolved.

Next, AS6133 links the intermediate object module files to create an object file.  This linkage processing is started

automatically.

AS6133 has an assembly time reduction function to make assembly efficient.  When an intermediate object module

file is created at the end of the second pass, the date/time of creation is added to the intermediate object module file.

When a source module file is partly corrected and reassembled, the creation date/time of the source module file is

compared with that of the existing intermediate object module file that has the same file name as that source module

file.  The source module file is assembled only when its creation date/time is more recent than that of the intermediate

object module file.

If the creation date/time of an object module file is more recent than that of the corresponding source module file,

AS6133 assumes that the source module file has not been changed and need not be reassembled.  In this case, the

existing object module file is used in linkage editing.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 81

4.2  Assembly Input/Output Files

AS6133 uses the following input files.

Input File Name Description File Type

Source file Source file created using an editor .ASM

Sequence file File in which a device name, the specification of assembly options, and a source module file

are saved.

* Use of a sequence file eliminates the necessity to specify a device name, assembly

options, or a source module file each time the assembler is started, thus making assembly

efficient.

.SEQ

Remark  An underlined file extension can be changed.

AS6133 uses the following output files.

Output File Name Description File Type

PROM file File holding object code in Intel hex format, and IFL/DFL. IFL/DFL is followed by an end

code in Intel hex format.  The object code and IFL/DFL are written at one time by

downloading the PRO file to the PROM writer.

.PRO

Assembly list file File holding the assembly list of a source module file. .PRN

Cross-reference

list file

File holding the cross-reference list of a source module file.  If no list is output, the file

extension is .XRF.

.PRN

Log file File holding error and warning messages to be output to the console during assembly.  The

name of this file is fixed at "AS6133.LOG."

.LOG

Intermediate

object module file

Intermediate file created for each source file during assembly

During linkage, the intermediate object module file is used as an input file.

.OBJ

Remark An underlined file extension can be changed.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

82 User’s Manual  U10115EJ3V0UM

4.3  Assembler Functions

4.3.1  Intermediate object module file output function

A source module file (.ASM) specified at the start of assembly is converted to machine words, which are then

output to an intermediate object module file (.OBJ) having the same name as the source module file.

The intermediate object module file is added with the date/time it was created.

4.3.2  Linkage function

AS6133 is an absolute assembler, but it has a linkage function so that a source file split into modules can be

assembled.

When source module files are assembled, an intermediate object module file is created for each source module

file, and linkage is automatically carried out later by accepting the intermediate object module files as input.

4.3.3  PRO file output function

A PRO file is created by linking intermediate object module files.  The PRO file consists of the object part and

IFL/DFL part.  It is a PROM data file for ordering a masked ROM chip.

See Chapter 5 for details.

4.3.4  Assembly time reduction function

AS6133 has an assembly time reduction function to make debugging efficient.

Before a source module file is assembled, its creation date/time is compared with the creation date/time of an

intermediate object module file having the same name as the source module file (if there is one).  If the creation

date/time of the intermediate object module file is more recent than that of the source module file, AS6133 assumes

that the source module file has not been changed and need not be reassembled.

If the creation date/time of the intermediate object module file is earlier than that of the source module file having

the same file name, that source module file and all source module files specified after that source module file are

assembled unconditionally.

If the order in which source module files are specified is changed, or a source module file is added or deleted, a

source module file changed after the latest assembly, and all source module files that follow it will be assembled

unconditionally.

To make the most of the assembly time reduction function, place debugged source module files before those which

are currently being debugged.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 83

Figure 4-1.  Processing Flow of the Assembly Time Reduction Function (1/2)

Start of AS6133

Read a sequence file.

Generate an object file name 
from the source file name.

No

Yes

Other than AS6133

AS6133

No

Yes

Yes

No

Yes

No

Yes

No

No

Yes

Were all source files assembled?

Yes

No

Go to <1> on the next page.

Is there any object
 file having the same name 

as the source file?

What assembler 
was used to create

    the object file?Note 1

Are the same 
device name and options

specified?Note 2

Was the source file 
created more recently than 

the object file?
To the next module

Was the include file 
specified in the source file created 

more recently than the object 
file?Note 3

Was the order in which
the source file was specified 

changed?Note 4

Is the device same?Note 5

Skip the assembling of the source file.

Assemble all source files 
described after that source file 
in the sequence file.

Assemble the source file and 
create an object file.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

84 User’s Manual  U10115EJ3V0UM

Figure 4-1.  Processing Flow of the Assembly Time Reduction Function (2/2)

No

Yes

End of AS6133

Was the PRO file created 
    at the same time or 
    after any object file?

Linkage editing

<1>

Notes 1.  The object file created using AS6133 begins with the "AS61" string.

2.  The device name and options specified in the sequence file are checked with those specified in the

object file.

3.  The name of the include file is acquired from the object file.

4.  The name of the immediately preceding source file is acquired from the object file.

5.  The device information is acquired from the object file.

4.3.5  Assembly list file output function

An assembly list file can be output after assembly.  An assembly option controls whether to output an assembly list

file.

See Chapter 5 for details.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 85

4.3.6  Cross-reference list file output function

AS6133 creates a cross-reference list file.

See Chapter 5 for details.

Figure 4-2.  AS6133 Input/Output File Configuration

Sequence file (.SEQ)

Temporary fileNote

The device name, 
assembly option, 
and source module file are specified.

Source module file (.ASM)

Host machine

PRO file (.PRO)
Intermediate object module 
file (.OBJ)

Assembly list file (.PRN)
Cross-reference file (.XRF)
Log file (AS6133.LOG)

AS6133

Note The temporary file will be deleted at the end of assembly.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

86 User’s Manual  U10115EJ3V0UM

4.4  Assembler Start-Up Procedure

4.4.1  Input files needed when the assembler starts

The following files are necessary to start the assembler.

(1) Sequence file (.SEQ)

This file holds a device name, assembly options, and a source program file name that are required during

assembly.

(2) Source module file (.ASM)

This file contains a source program.

See Section 4.2 for details.

4.4.2  Starting the assembler

This section describes the actual procedure to start the assembler.

The assembler can be started by either of the following procedures.

Input methods

  (1) ×>[directory]AS6133  ↵ 

  (2) ×>[directory]AS6133∆<sequence-file-name>  ↵ 

×:  current drive name

Cautions 1.  To omit [directory] of AS6133, it is necessary to specify the PATH environment variable.

2.  The sequence file and source file must be in the same directory.

The operation of the assembler is described below for the above two input methods separately.

  (1)  Starting by ××××>[directory]AS6133  ↵↵↵↵ 

Insert the assembler disk into drive A, and the disk holding the sequence and source files in drive B.

Change the prompt to drive B, where the disk holding the sequence and source files is inserted, and enter as

follows: "A:AS6133"

B>A:AS6133  ↵ 

The assembler will be loaded into memory and started to run.

After started, the assembler searches the current directory for the sequence file (.SEQ) as follows:

1. If there is one sequence file in the current directory

The sequence file is read automatically, and assembly is carried out according to the contents of the

sequence file.

2. If there is more than one sequence file in the current directory

All sequence file names are numbered sequentially starting at 1, and listed on the display screen.  The user

should select the sequence file to be subjected to assembly.

3. If there is no sequence file to be selected

The assembler stops running.  Re-set the entry.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 87

[Example]

(a) Starting the assembler under MS-DOS

B>A:AS6133  ↵ 
µPD6133 SERIES ASSEMBLER Vx.xx [xx xxx xx]

Copyright (c) NEC Corporation 1995, 2000

=== SEQ FILE LIST IN CURRENT DIRECTORY ===

1) TEST1.SEQ  2) TEST.SEQ  3) TEST2.SEQ  4) TEST3.SEQ

Enter the sequence file number: 2  ↵ 
TEST.ASM assembly started on:  HH:MM:SS  MM/DD/YY

(b) Starting the assembler under PC DOS

B>A:AS6133  ↵ 
µPD6133 SERIES ASSEMBLER Vx.xx [xx xxx xx]

Copyright (c) NEC Corporation 1995, 2000

=== SEQ FILE LIST IN CURRENT DIRECTORY ===

1) TEST1.SEQ  2) TEST.SEQ  3) TEST2.SEQ  4) TEST3.SEQ

SEQ FILE ? (SELECT NUMBER) = 2  ↵ 
TEST.ASM << ASSEMBLY START >>  HH:MM:SS  MM/DD/YY

  (2)  Starting the assembler by ××××>[directory]AS6133∆<sequence-file-name>  ↵↵↵↵ 

Insert the assembler disk into drive A, and the sequence and source file disk into drive B.

Enter "AS6133∆B:SAMPLE.SEQ" in response to the prompt (A>).

A>AS6133∆B:SAMPLE.SEQ  ↵ 

This entry causes the assembler to be loaded into memory and to run according to the SAMPLE.SEQ

sequence file in drive B.

The ".SEQ" extension can be left out from the sequence file name.  If it is left out, it is assigned automatically.

If the specified sequence file is missing, the assembler ends running.  Enter the correct sequence file name.

4.4.3  Aborting assembly

To abort the assembler, enter control+C (^C) from the console.  On receiving ^C, the assembler closes all files and

stops running.

After the assembler stops, the MS-DOS prompt (A>) appears.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

88 User’s Manual  U10115EJ3V0UM

4.5  Assembly Options

Assembly options are used to specify the files to be output during assembly, their types, related variables, and

work drive.

Assembly options are specified when they are written in the sequence file.  See Section 4.4 for details.

If no assembly option is specified, the default assembly options (previously specified in the assembler) are used.

Table 4-1.  Assembly Options

Option DefaultNote Description Reference

HOS[T]

NOH[OST]

HOST Controls EB-6133 emulator output. p.89

OBJ[=<directory>]

NOO[BJ]

OBJ (disabled) Controls object output. p.90

PRO[=file-name[.PRO]]

NOPRO

PRO (disabled) Controls load module output. p.91

LIS[T][=file-name[.PRN]]

NOL[IST]

LIST (disabled) Controls assembly list output. p.92

XREF[=file-name[.XRF]]

NOX[REF]

XREF (NOX) Controls cross-reference list output. p.93

ROW[=n] ROW = 66 (enabled) Specifies the number of lines to be output on one page of list

output (50 to 250).

p.94

COL[UMN][=n] COL = 80 (col = 132) Specifies the number of columns to be output on one line of

list output (72 to 256).

p.94

SEQ

NOS[EQ]

SEQ (NOS) Controls option information output. p.95

TAB

NOT[AB][=n]

NOTAB = 8 (enabled) Controls tabs (1 to 255). p.95

FOR[M]

NOF[ORM]

FORM (enabled) Controls form feed. p.96

ZZZn = m ZZZn = 0 (enabled) Controls assembly variables. p.96

WOR[K] = drive-name: Current drive

(enabled)

Specifies a work drive. p.97

HEAD

NOHEAD

HEAD (HEAD) Controls list header output. p.97

HEL[P] − Displays help messages. p.98

Note Information enclosed in parentheses corresponds to the setting used when /HOST is specified.  "Disabled"

means that the default value is fixed.  Only the currently "enabled" value can be used.

Caution To use the EB-6133 emulator, it is always necessary to specify the HOST option.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 89

4.5.1  Option to control EB-6133 emulator information output

[Format]

HOS[T] Default value.../HOST

NOH[OST]

[Function]

This option specifies whether to output information necessary to use the EB-6133 emulator (µPD6133 Series

development tool).

[Description]

(1)  HOS[T]

The information about the EB-6133 emulator is output to the object file.

The following assembly options are specified forcibly:

/OBJ/PRO/LIST/NOXREF/COL = 132/NOSEQ

All the files related to the above assembly options are output to the directory where the sequence file is.

Caution  When /HOST is selected, all related input files (source files) must be in the same directory

as the sequence file.

(2)  NOH[OST]

The information about the EB-6133 emulator is not output.

Caution  If no option is specified, /HOST is specified as default assumption.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

90 User’s Manual  U10115EJ3V0UM

4.5.2  Option to control object file output

[Format]

OBJ[=<directory>] Default value.../OBJ

NOO[BJ] When /HOST is specified...disabled

[Function]

This option specifies whether to output an intermediate object file.  If the option specifies to output an intermediate

object file, it also specifies the directory to which the file is to be output.

If the specified directory contains an intermediate object file having the same name as the source module file, and

its creation date/time is more recent than the source module file, assembly will not be carried out.

[Description]

(1) /OBJ[=<directory>]

An intermediate object file will be output.

(2) /NOO[BJ]

No intermediate object file will be output.

(3) The option can specify only the directory to which an intermediate object file is to be output.  It cannot specify

the name of the intermediate object file.

(4) If no intermediate object file is to be output (/NOO is specified), the /PRO option is disabled.

(5) This option is disabled, if the /HOST option (EB-6133 emulator information output) is specified.  In this case,

the intermediate object file is always output to the directory where the sequence file is.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 91

4.5.3  Option to control load module file (PRO file) output

[Format]

PRO[=file-name[.PRO]] Default value.../PRO

NOP[RO] When /HOST is specified...disabled

[Function]

This option specifies whether to output a load module file (PRO file).  If the option specifies to output a load module

file, it also specifies the name of the load module file.

[Description]

(1) PRO[=file-name]

A PRO file is output.

•••• Specifying no file name

A load module file is output to the directory where the sequence file is, and named after the sequence file,

that is:  sequence-file-name.PRO

•••• Specifying a file name

A load module file is created under the specified file name.  The file names that can be used include:  AUX,

CON, PRN, and NUL.  These files are directed to the following devices.

•  AUX:  RS-232C

•  CON: Console (usually CRT)

•  PRN: Printer

•  NUL: No file output

The file name must be specified in format:  [drive-name:[\directory\]]file-name

If a file extension is omitted, ".PRO" is used.

(2) NOP[RO]

No load module file is output.

(3) This option is disabled, if the /HOST option (EB-6133 emulator information output) is specified.  In this case,

the PRO file is always output to the directory where the sequence file is.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

92 User’s Manual  U10115EJ3V0UM

4.5.4  Option to control assembly list file output

[Format]

 LIS[T][=file-name[.PRN]] Default value.../LIST

NOL[IST] When /HOST is specified...disabled

[Function]

This option specifies whether to output an assembly list file.  If the option specifies to output an assembly list file, it

also specifies the name of the assembly list file.

[Description]

(1) LIS[T]

An assembly list file is output.

The destination of output can be specified in either of the following two ways.

Specifying no file name

An assembly list file is created under the same name as the source file in the directory where the source

file is.  If a source program is split into several modules, an assembly list file corresponding to a specific

source module file is created under the same name as that source module file in the directory where that

source module file is.  The file extension ".PRN" is used for the assembly list file.

Specifying a file name

An assembly list file is created under the specified file name.  The file names that can be used include:

AUX, CON, PRN, and NUL

The file name must be specified in format:  [drive-name:[\directory\]]file-name

If a file extension is omitted, ".PRN" is used.

(2) NOL[IST]

No assembly list file is output.

(3) This option is disabled, if the /HOST option (EB-6133 emulator information output) is specified.  In this case,

the assembly list file is always output under the same name as the source file to the directory where the

sequence file is.  The file extension ".PRN" is used.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 93

4.5.5  Option to control cross-reference list file output

[Format]

XRE[F][=file-name[.XRF]] Default value...XREF

NOX[REF] When /HOST is specified.../NOX

[Function]

This option specifies whether to output a cross-reference file.  If the option specifies to output a cross-reference

file, it also specifies the name of the cross-reference file.

If the output of a cross-reference file is specified, a cross-reference file is output for each source module file on a

one-to-one basis.

[Description]

(1) XRE[F]

A cross-reference file is output.

The destination of output can be specified in either of the following two ways.

Specifying no file name

<1> If an assembly list is output, the cross-reference list is output to the same file as the assembly list.  In

this case, the file name specified here must be the same as the assembly list file.

<2>  If no assembly list is output, that is if NOL is specified, a cross-reference file is created under the

same name as the source file in the directory where the source file is.  In this case, the file extension

".XRF" is used for the cross-reference file.

Specifying a file name

A cross-reference file is created under the specified file name.  This method is used to specify that the

cross-reference list be output to a file different from the assembly list file.  The file names that can be used

include:  AUX, CON, PRN, and NUL

The file name must be specified in format:  [drive-name:[\directory\]]file-name

If a file extension is omitted, ".XRF" is used.

(2) NOX[REF]

No cross-reference file is output.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

94 User’s Manual  U10115EJ3V0UM

4.5.6  Option to control the number of lines to be output on one list output page (ROW NO.)

[Format]

ROW=n
Default value.../ROW = 66

When /HOST is specified...enabled

[Function]

This option specifies the number of lines per page in all list files (such as assembly list and cross-reference list

files).

[Description]

"n" is the number of lines per page.  It is a decimal number, and can range between 50 and 250 (inclusive).

4.5.7  Option to control the number of columns to be output on one list output line

[Format]

COL[UMN]=n
Default value.../COL = 80

When /HOST is specified.../COL = 132

[Function]

This option specifies the number of columns per line in all list files (such as assembly list, memory map, and cross-

reference list files).

[Description]

"n" is the number of lines per page.  It is a decimal number, and can range between 72 and 255 (inclusive).



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 95

4.5.8  Option to control option information output

[Format]

SEQ Default value.../SEQ

NOS[EQ] When /HOST is specified.../NOS

[Function]

This option specifies whether to output the following information to the first page of the assembly list of each source

module.

• Sequence file name specified when the assembler is started, and the contents of the sequence file (SEQ=)

[Description]

(1) SEQ

Information (described under [Function]) about the options is output to the first page of the assembly list file.

(2) NOSEQ

Information about the options is not output to the first page of the assembly list file.  This information cannot

be output separately from the assembly list.

(3) This option is disabled if /NOLIST is specified as the assembly list file output control option.

4.5.9  Tab control option

[Format]

TAB Default value...NOT = 8

NOTAB[=n] When /HOST is specified...enabled

[Function]

This option specifies whether to use tab characters in the assembly list.

[Description]

(1) TAB

Tab characters are used in the assembly list.  If this is selected, assembly is speeded, and the memory

capacity required to store the files becomes smaller.

(2) NOT[AB]

No tab characters are used in the assembly list.  A tab character (if there is one) is replaced with space

characters so that the character next to the tab character is at the column that is a multiple of n (as counted

from the beginning of the line).  "n" is a decimal number, and can range between 1 and 255 (inclusive).  If "n"

is out of this range, an error is detected, and the assembler is aborted.

This option should be used for a printer that cannot recognize the tab character.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

96 User’s Manual  U10115EJ3V0UM

4.5.10  Form feed control option

[Format]

FOR[M] Default value.../FOR

NOF[ORM] When /HOST is specified...enabled

[Function]

This option specifies whether the form of the output list be fed by a form feed character (0CH in 8-bit JIS code) or

sets of CR/LF characters.

[Description]

(1) FOR[M]

The form of the output list is fed by a form feed character.

(2) NOF[ORM]

The form of the output list is fed by outputting CR/LF character sets repeatedly until the value specified in the

ROW option (option to control the number of lines per output list page) is reached.

(3) This option should be used for a printer that cannot recognize the form feed character.

If FOR[M] is selected, assembly is speeded, and the memory capacity required to store the files becomes

smaller.

4.5.11  Option to control assembly-time variables

[Format]

ZZZn = m
0 ≤ n ≤ 9

0H ≤ m ≤ 0FFFFH

Default value...ZZZn = 0

When /HOST is specified...enabled

[Function]

This option initializes the ZZZn assembly-time variable to the value m.

[Description]

(1) The evaluated value of m must fall in a range between 0H and 0FFFFH.  If it is greater than 0FFFFH, it is

assumed to be 0.

(2) m can be a binary, octal, decimal, or hexadecimal number.  If a character string is specified as m, an error

(invalid option) is reported, and the assembler is aborted.

(3) If the option is not specified when the assembly is started, the assembly-time variables are initially set to 0.

This value remains effective until it is changed by a SET pseudo instruction.



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

User’s Manual  U10115EJ3V0UM 97

4.5.12  Option to control a work drive

[Format]

WOR[K] = drive-name:
Default value...current drive

When /HOST is specified...enabled

[Function]

This option specifies the name of a drive in which assembly work files are prepared.

[Description]

(1) Drive name specification

Only one drive name can be specified.

Example:  WORK = A:

(2) All work files are deleted at the end of assembly.

4.5.13  Option to control list header output

[Format]

HEAD Default value...HEAD

NOHEAD When /HOST is specified...HEAD

[Function]

This option specifies whether to output the headers of lists such as an assembly list and cross-reference file list.

[Description]

(1) /HEAD

The header is output to each page of the list.

(2) /NOHEAD

The header is output only to the first page of the list.  It is not output to the other pages.

(3) This option is applicable to the following lists.

•  Assembly list file

•  Cross-reference list file



PART  II   CHAPTER  4   ASSEMBLER  FUNCTIONS

98 User’s Manual  U10115EJ3V0UM

4.5.14  Help message display

[Format]

HEL[P]

[Function]

This option displays the description of AS6133.

[Description]

This option cannot be specified in the sequence file.  It can be specified only in format:  AS6133∆/HEL[P]



User’s Manual  U10115EJ3V0UM 99

CHAPTER  5   ASSEMBLY  OUTPUT  LISTS

5.1  Types of Assembly Output Lists

AS6133 can output the following lists after assembly.

Table 5-1.  Output Lists

Output File Output File Extension Assembly Option Whether the List Is Output

When/HOST Is Specified

Object file .OBJ /OBJ

PRO file .PRO /PRO

Assembly list .PRN /LIS[T]

Option information list .PRN /SEQ

Cross-reference list .XRF or .PRN /XRE[F]

Log file AS6133.LOG

To output a list mentioned in Table 5-1, specify the corresponding assembly option when starting the assembler.

See Section 4.5 for how to specify it.

If it is unnecessary to output a list, prefix the corresponding assembly option with "NO" as in /NOLIST or /NOSEQ.



PART  II   CHAPTER  5   ASSEMBLY  OUTPUT  LISTS

100 User’s Manual  U10115EJ3V0UM

5.2  Controlling Each List Output Format

(1) Number of lines per page

The number of lines per page is determined by the ROW = n assembly option (where 50 ≤ n ≤ 250).  n is

defaulted to 66.

(2) Number of columns per line

The number of columns per line is determined by the COL = n assembly option (where 72 ≤ n ≤ 255).  If the

specified list output exceeds this value, the excess portion is cut out from listing.  If a full-size character falls in

the cut position, the cut position is shifted one place backward.  n is defaulted to 80.  If /HOST is specified,

however, n is fixed at 132.

(3) Form feed control

The form is fed according to the FORM/NOFORM assembly option.

FORM................ A new page is selected when the FF character is detected (default).

NOFORM........... The form is advanced by outputting CR/LF characters repeatedly until the form is advanced

as many lines as specified in the ROW assembly option.

Note  FF (form feed) character ................... 0CH in the 8-bit JIS code

LF (line feed) character ..................... 0AH in the 8-bit JIS code

CR (carriage return) character........... 0DH in the 8-bit JIS code

(4) Tab control

Tab control is carried out according to the TAB/NOTAB assembly option.

NOTAB = n .............. A tab character is replaced with space characters so that the character next to the tab

character is at the column whose number (counted from the beginning of the line) equals

a multiple of n (n is defaulted to 8).

TAB ......................... Tab characters are output.



PART  II   CHAPTER  5   ASSEMBLY  OUTPUT  LISTS

User’s Manual  U10115EJ3V0UM 101

5.3  Header Output

Lists other than a document list have a header (printed at the top of each page) consisting of the following

information:

(1)  Assembler name and version

(2)  Device name

(3)  Listing title

(4)  Assembly date/time and page (module sequence number - page number within the module)

(5)  Module name

Example:  UPD6133.ASM

An assembly option can specify whether to output the header.

/HEAD (default) specifies that the header be printed at the top of each assembly list page.

/NOHEAD specifies that the header be output at the top of the first page only.



PART  II   CHAPTER  5   ASSEMBLY  OUTPUT  LISTS

102 User’s Manual  U10115EJ3V0UM

5.4  Assembler's Check Functions

The assembler checks each instruction in a source program to minimize errors that may occur when its object

program is executed.

5.4.1  Error check for instructions exceeding the allowable number of bits

The assembler outputs a message if an instruction in a source program exceeds the allowable number of bits.

(1) Instructions specifying immediate data

ANL A, #data : Error if the number of bits is greater than 4.

ORL A, #data : Error if the number of bits is greater than 4.

XRL A, #data : Error if the number of bits is greater than 4.

OUT Pp, #data : Error if the number of bits is greater than 10.

If bit 8 or 9 is 1, a warning message is output, and bits 8 and 9 are reset to 0.

MOV A, #data : Error if the number of bits is greater than 4.

MOV Rr, #data : Error if the number of bits is greater than 10.

If bit 8 or 9 is 1, a warning message is output, and bits 8 and 9 are reset to 0.

MOV T, #data : Error if the number of bits is greater than 10.

MOV M0, #data : Error if the number of bits is greater than 10.

MOV M1, #data : Error if the number of bits is greater than 10.

STTS #data : Error if the number of bits is greater than 4.

(2) DT and DW instructions

DT instruction : Error if the number of bits is greater than 10.

DW instruction : Error if the number of bits is greater than 10.

DW instruction : If bit 8 or 9 is 1, a warning message is output, and bits 8 and 9 are reset to 0.

5.4.2  Check to prevent a program crash

If the supply voltage fluctuates during operation, or a power-on reset fails to take place, the program counter may

become undefined, possibly resulting in a program crash.  If the program counter points to an address at which there

is no programmed instruction, and the code at that address happens to match the operation code of a jump or HALT

instruction, an endless loop may result.

To prevent a program crash, if the object code pointed to by the program counter happens to match the operation

code of a branch or HALT instruction, the assembler outputs a warning message and displays an instruction that will

be generated.  The instructions generated in this case include:  JMP, JC, JNC, JF, JNF, CALL, RET, and HALT.

If a warning message is output, check the instruction that will be generated.  If the instruction can cause an endless

loop, the program should be corrected.



PART  II   CHAPTER  5   ASSEMBLY  OUTPUT  LISTS

User’s Manual  U10115EJ3V0UM 103

5.4.3  Check for the destination of a branch instruction (automatic check on BANK0 and BANK1)

This check is made for a device in which the number of ROM words is greater than 1,024.

To branch execution without the BANK number at the branch destination described in the mnemonic, describe as

follows:

•  Object code of J×0 or CALL0 to branch to BANK0 (0 to 1,023 instructions)

•  Object code of J×1 or CALL1 to branch to BANK1 (1,024 to 2,047 instructions)

•  Object code of J×2 or CALL2 to branch to BANK2 (2,048 to 3,071 instructions)

•  Object code of J×3 or CALL3 to branch to BANK3 (3,072 instructions or more)

If J×0, J×1, J×2, J×3, CALL0, CALL1, CALL2, or CALL3 is described with a BANK number, an error occurs.

•  Branch instruction Source instruction

JMP0
JMP1
JMP2
JMP3

addr
addr
addr
addr

JMP addr

JC0
JC1
JC2
JC3

addr
addr
addr
addr

JC addr

JNC0
JNC1
JNC2
JNC3

addr
addr
addr
addr

JNC addr

JF0
JF1
JF2
JF3

addr
addr
addr
addr

JF addr

JNF0
JNF1
JNF2
JNF3

addr
addr
addr
addr

JNF addr

•  Subroutine instruction Source instruction

CALL0
CALL1
CALL2
CALL3

addr
addr
addr
addr

CALL addr



PART  II   CHAPTER  5   ASSEMBLY  OUTPUT  LISTS

104 User’s Manual  U10115EJ3V0UM

5.4.4  Check for output to an input-only port

If an output instruction is coded for an input-only port, an error message is output.

••••  Input-only port

P11 (KI3 to KI0)

P01 (S1/LED,S0)

•••• Output instruction

OUT  P11, A

OUT   P01, A

OUT  P1, #data

5.4.5  Check for input/output instructions for nonexisting ports

A warning message is output if an input or output instruction is coded for a nonexisting port.

                  Port

Device

P10

(KI/O7 to KI/O4)

P00

(KI/O0 to KI/O3)

P11

(KI3 to KI0)

P01

S1LED

S0

P12

I/OPull

I/OMode

P02

(I/O3 to I/O0)

D6133 × ×

D6134 × ×

D6135

D6603 Note 1 Note 2 × ×

D6604 × ×

D6605

D63 × ×

D63A × ×

D64 × ×

D64A × ×

D65

D62 × ×

D62A × ×

D6132 × ×

D6132A × ×

D67 × ×

D68 × ×

D69 × ×

:  No warning message is output.  ×:  A warning message is output.

Caution Refer to the device name of the supported mask ROM version device when using the

µµµµPD61P34B, 66P04B, 6P4B, 6P5, or 6P9.

Notes 1. D6603 does not have KI/O7 to KI/O5 but a warning message is not output.

2. D6603 does not have S0 but a warning message is not output.



User’s Manual  U10115EJ3V0UM 105

CHAPTER  6   ERROR  MESSAGES

6.1  Errors Detected at Start-Up and Run Time

If a parameter specified at start-up is incorrect, or an error occur at run time, AS6133 displays error messages,

then stops prematurely.

Message text file not found

Cause A file specified at start-up is not found in a specified directory on a specified drive

System action AS6133 stops running.

User response Specify the correct file.

Message text invalid option

Cause A specified option is invalid (such as invalid option name or parameter).

System action The invalid option is indicated, and assembly is aborted.

User response Specify the correct option.

Message text invalid option value

Cause A value specified for an option is invalid (a value out of the describable range was specified).

System action The invalid option is indicated, and assembly is aborted.

User response Specify the correct option.

Message text out of memory

Cause The memory capacity is insufficient.

System action Assembly is aborted.

User response Decrease the number of options used, increase memory, or change the /WORK drive specification.

In the following case, a message is displayed, but assembly is not aborted.

Message text HALT table overflow

Cause The HALT area has overflowed.

System action There are more than 32 HALT instructions, and information about the HALT instructions is not preserved.

User response Decrease the number of the HALT instructions.



PART  II   CHAPTER  6   ERROR  MESSAGES

106 User’s Manual  U10115EJ3V0UM

(1) Error message format

An error message includes a source statement in which the error occurred.  The displayed source statement

line is followed by a line containing the source file name, line number, error type, error number, and error

message text.  The error message ends with the numbers of errors and warnings.

[Example]

<1>:  Source file name

<2>:  Line number

<3>:  Error type

1:  ROM area overflow

1:  A location out of the program memory was referenced.

A:  Addressing error

F:  Include file open error

I: Invalid operand value in the ORG pseudo instruction

I:  Invalid data strength

I:  Error related to an INCLUDE file

M:  MACRO management file I/O error

M:  Memory area overflow

M:  Invalid instruction

N: Nest stack overflow

O:  Mask option definition block error

O: Duplicate mask option specification

O:  Invalid operand

P:  Invalid pseudo instruction

P: Invalid statement

R: REPT area overflow

R:  A statement was written out of the program memory area.

R:  A reserved word was used where it should not be.

S:  Duplicate symbol definition or undefined symbol

S:  Symbol area overflow

S:  Syntax stack overflow

S: Format or syntax error

T:  Invalid operand

U:  Undefined symbol

V:  Invalid operand value or count

W:  Warning

INC

DIRTEST.ASM (3): S  error-number 058:  Undefined symbol

<1> <2> <3> <4> <5>

Number of errors = 1     Number of warnings = 0 

Source statement in which the 
error is detected

Source file name, line number, 
error message text

Total numbers of errors and 
warnings

C



PART  II   CHAPTER  6   ERROR  MESSAGES

User’s Manual  U10115EJ3V0UM 107

<4>:   Error number

<5>:   Error message text

Caution  The warning messages described in Section 5.4.2 may not include a source statement in

which an error is detected.

Message text Illegal first operand type

Cause The first operand is invalid.

11 Code O

User response Correct the expression.

Message text Illegal second operand type

Cause The second operand is invalid.

12 Code O

User response Correct the expression.

Message text Illegal first operand value

Cause The first operand value is incorrect.

14 Code V

User response Make sure that the operand value is acceptable to the device model

of interest.

Message text Unreference symbol

Cause The symbol has not been referenced.

20 Code W

User response Check whether the symbol is necessary.  If the symbol is

unnecessary, delete it.  If the symbol is necessary, reference it.

Message text No IF directive

Cause An IF statement is missing.

21 Code P

User response Write an IF statement in the correct position.

Message text Symbol define error

Cause The symbol definition is incorrect.

25 Code S

User response Correct the symbol define pseudo instruction and its operand.

Message text No OPTION statement

Cause An OPTION statement is missing.

27 Code P

User response Add an OPTION statement, because an ENDOP statement was

specified when an OPTION statement was not.

Message text No END directive

Cause An END statement is missing.

28 Code P

User response Add an END statement.

Message text No ENDIF directive

Cause An ENDIF is missing.

29 Code P

User response Write an ENDIF statement in the correct position.

Message text No ENDR directive

Cause An ENDR statement is missing.

31 Code P

User response Write an ENDR statement in the correct position.



PART  II   CHAPTER  6   ERROR  MESSAGES

108 User’s Manual  U10115EJ3V0UM

Message text No ENDM directive

Cause MACRO has no corresponding ENDM statement.

32 Code P

User response Write an ENDM statement in the correct position.

Message text No ENDP directive

Cause An ENDP statement is missing.

33 Code P

User response Write an ENDP statement in the correct position.

Message text Nesting overflow

Cause The nest stack has overflowed.

35 Code N

User response Decrease the total nesting depth of IF and REPT-ENDR statements

to or below level 40.

Message text Operand count error

Cause An attempt was made to specify more operands than allowed.

36 Code O

User response Decrease the number of operands.

Message text Syntax error

Cause There is a syntax error.

37 Code S

User response Correct the statement.

Message text Symbol area overflow

Cause The symbol area has overflowed.

39 Code S

User response Decrease the number of symbols, or increase the size of the usable

memory area.

Message text Invalid ENDR statement

Cause The ENDR statement is invalid.

41 Code P

User response Write the ENDR statement in the correct position.

Message text Invalid EXITR statement

Cause The EXITR statement is invalid.

42 Code P

User response Write the EXITR statement in the correct position.

Message text Invalid ENDM statement

Cause The ENDM statement is invalid.

43 Code P

User response Write the ENDM statement in the correct position.

Message text Invalid value

Cause There is an invalid value.

44 Code V

User response Correct the value.

Message text Invalid operand

Cause There is an invalid operand.

45 Code T

User response Correct the operand.

Message text Out of address range (3)

Cause A statement is written out of the program memory area (3).

47 Code R

User response Shift the statement into the program memory area.



PART  II   CHAPTER  6   ERROR  MESSAGES

User’s Manual  U10115EJ3V0UM 109

Message text Used reserved word

Cause A reserved word is used where it should not be.

49 Code R

User response Do not use a reserved word in the name of a symbol.

Message text Invalid data length

Cause The data length is invalid.

51 Code I

User response Do not try to use more characters than allowed for the data.

Message text Include nesting error

Cause There two many include nesting levels.

52 Code N

User response Decrease the number of include nesting levels to within 8.

Message text Duplicated OPTION directive

Cause There are duplicate OPTION pseudo instruction definitions.

53 Code O

User response Do not write more than one option block in a source program.

Message text Rept area overflow

Cause The REPT area has overflowed.

55 Code R

User response Decrease the number of repeat definition nesting levels to within 8.

Message text Symbol multi defined

Cause There are duplicate symbol definitions.

57 Code S

User response Use different symbol names.

Message text Undefined symbol

Cause There is an undefined symbol.

58 Code S

User response Write a defined symbol, or define one.

Message text Invalid Pseudo

Cause There is an invalid pseudo instruction.

59 Code P

User response Correct the pseudo instruction.

Message text Include file open error

Cause An include file cannot be opened.

61 Code F

User response Specify a correct include file, or expand the memory area.

Message text Parser stack overflow

Cause The syntax stack area has overflowed.

62 Code S

User response Decrease the nesting depth of ( and ) pairs below level 17 and

number of operators below 32.

Message text Statement after END

Cause An END statement is followed by another statement.

65 Code W

User response Remove the statement after the END statement.

Message text Address error

Cause A specified address is incorrect.

67 Code A

User response Specify an address that is acceptable to the device model of interest.



PART  II   CHAPTER  6   ERROR  MESSAGES

110 User’s Manual  U10115EJ3V0UM

Message text Operation in OPTION block

Cause A mask option definition block contains an instruction.

68 Code W

User response Remove the instruction.

Message text Illegal first operand type and value

Cause The value of the first operand is invalid.

71 Code O

User response Correct the operand.

Message text Illegal second operand type and value

Cause The value of the second operand is invalid.

72 Code O

User response Correct the operand.

Message text Undefined first operand symbol

Cause The symbol in the first operand is undefined.

74 Code U

User response Use a defined symbol, or define the symbol already used in the

operand.

Message text Undefined second operand symbol

Cause The symbol in the second operand is undefined.

75 Code U

User response Use a defined symbol, or define the symbol already used in the

second operand.

Message text Not found Mask-option block

Cause A mask option definition block is missing.

77 Code O

User response Specify a mask option using an OPTION pseudo instruction.

Message text Invalid ENDP statement

Cause There is an invalid ENDP statement.

85 Code P

User response Specify an ENDP statement that corresponds to PUBLIC BELOW.

Message text Invalid instruction of last address in program

Cause The last instruction in the program is neither JMP nor RET.

98 Code W

User response If the last instruction is not DW or DT, specify either a JMP or RET

instruction.

Message text Over max value

Cause The specified value is greater than an allowable number of bits, file

name [address].

99 Code V

User response Decrease the value to within an allowable number of bits.

If a value is determined at linkage time, the file name and  address

are displayed.

Message text Over effective value

Cause The specified value is greater than a valid number of bits.

100 Code W

User response Reset the invalid bits to 0.

Decrease the value to within an allowable number of bits.

Message text Output request for read only port

Cause An output instruction was specified for an input-only port.

101 Code P

User response Specify an output instruction only for an input/output or output-only

port.



PART  II   CHAPTER  6   ERROR  MESSAGES

User’s Manual  U10115EJ3V0UM 111

Message text Input/Output request for non-existent port

Cause An input/output instruction was specified for a nonexisting port.

102 Code W

User response Specify the input/output instruction for an existing port.

Message text Same operand value with branch or HALT

Cause An operand value happened to match the operation code of a branch

or HALT instruction.

103 Code W

User response A value specified in the second or subsequent operand of an

instruction or a value defined in a Define instruction happened to

match the operation code of a branch or HALT instruction.  For a

branch instruction, the error message contains the branch address.

For the HALT instruction, the error message contains the operand

value.

Check the operation of an instruction executed after the program

counter becomes undefined.

Message text The source file does not exist in the same directory with SEQ file

Cause When the /HOST option is specified, the source file is not in the

same directory as the sequence file.

104 Code S

User response Move the source file to the same directory where the sequence file is.

Message text Too many INCLUDE file

Cause There are too many INCLUDE files.

105 Code I

User response Decrease the number of INCLUDE files per source file to within 16.

Message text Too long INCLUDE file name

Cause There are too many characters in the names of INCLUDE files.

106 Code I

User response Decrease the number of characters in the INCLUDE file names per

source file to within 255.



User’s Manual  U10115EJ3V0UM112

APPENDIX  A   CONSTRAINTS

This appendix explains the constraints of AS6133 V2.21 or later.

No. Constraint

1 When /HOST option is specified, a drive name and a directory name must not be included in the source file name

described in the sequence file.

Also when /NOH[OST] option is specified, a relative path must not be specified in specifying a source file name to be

described in the sequence file.

For the description format of a source file name, see Section 3.2.4.

2 The µPD6P4 cannot be used with program memory of 2,016 words.



User’s Manual  U10115EJ3V0UM 113

APPENDIX  B   REVISION  HISTORY

Here is the revision history of this manual.  "Location" indicates the chapter of the edition.

Edition Major Revision from Preceding Edition Location

Deleting description "separate volume of SM6133" or

"supplied with SM6133" because AS6133 assembler is

separated from SM6133 simulator.

Changing supported debugger from NEC's SM6133 simulator

to Naito Densei Machida Mfg's EB-6133

Adding µPD63 Series as target device

Throughout

Adding series name and device that can be supported

Changing description of PC-9800 series, IBM PC/AT

compatibles, and assembler

PREFACE

Adding USEPOC/NOUSEPOC, USECAP/NOUSECAP PART I  LANGUAGE,  CHAPTER 3  PSEUDO

INSTRUCTIONS AND CONTROL

INSTRUCTIONS

Adding description on supported debugger PART II  OPERATION,  CHAPTER 1

PRODUCT OVERVIEW

Adding description on install PART II  OPERATION,  CHAPTER 2  BEFORE

EXECUTION

Changing device name that can be described and description

of supported device

PART II  OPERATION,  CHAPTER 3

SEQUENCE FILE

Changing description in [Example] of assembler start-up

procedure

PART II  OPERATION,  CHAPTER 4

ASSEMBLER FUNCTIONS

Adding description on instructions specifying immediate data

Changing description of check for the destination of a branch

instruction

Adding device to check for input/output instructions for

nonexisting ports

PART II  OPERATION,  CHAPTER 5

ASSEMBLY OUTPUT LISTS

3rd edition

Addition APPENDIX A  CONSTRAINTS



User’s Manual  U10115EJ3V0UM114

[MEMO]



Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur.  Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax:  +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax:  +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax:  +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax:  +49-211-6503-274

South America
NEC do Brasil S.A.
Fax:  +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax:  +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax:  +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS  01.2

Name

Company

From:

Tel. FAX

Facsimile  Message


