Asymmetrical High Efficiency Two Channel Boost LED/OLED Driver

Features

- Integrated WLED and OLED driver
- 2.7 V to 6 V input voltage range
- Up to 85% typical efficiency even for differenent channel loads in terms of LED number, LED current and LED dropout
- Excellent 5 series x 1 parallel WLED drive capability (35 mA per channel)
- OLED channel with up to $18 \mathrm{~V} / 30 \mathrm{~mA}$ capability
- Independent current/voltage setting using external low power resistors for each channel (no ballast resistors)
- No external frequency compensation needed
- Low ($<1 \%$) LED output ripple voltage and current
- Input undervoltage lockout and output over voltage protection
- 1 MHz fixed switching frequency (0.5 MHz option available)
- Uses small inductor and ceramic capacitors
- Integrated 0.3Ω internal power switch
- Disconnects LEDs during shutdown
- Low Profile TDFN-10 package
- Optional RoHS compliant lead free package

Applications

- Drives white LED backlighting and OLED
- Cellar phones
- Digital Cameras
- PDA, GPS, MP3 players
- Handheld devices

Product Description

The CM9311 is a high frequency, two-channel induc-tor-based PWM boost regulator specifically designed for constant current white LED and constant voltage OLED drive applications. With a maximum 19V/100mA output capability, the circuit can drive up to 5 WLEDs (5 series $x 1$ parallel) and one OLED, allowing up to 35 mA per channel. With an input voltage range from 2.7 V to 6.0 V , it can operate from a single cell Li-lon battery.

The proprietary FlexBoost ${ }^{\text {TM }}$ architecture (patent pending) provides high efficiency (typical 85\%) for a wide input voltage range, even for different channel loads in term of LED number, LED current and LED type. The maximum LED current and OLED voltage for each channel is independently programmed with external low-power resistors (no ballast resistors needed).
A 1 MHz constant frequency PWM saves board space, allowing small, low-cost external components, and permitting designers to avoid sensitive IF bands in RF applications. The output over-voltage protection circuit prevents damage in the case of a high impedance output (e.g. faulty LED). The controlled current limit circuit prevents large inductor current spikes, even at startup. To avoid possible leakage currents, the EN control pin disconnects the LEDs from ground during shutdown.

The CM9311 is available in a compact TDFN-10 package. It can operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Typical Application

Package Pinout

PACKAGE / PINOUT DIAGRAM

10-Lead TDFN Package
(3mm x 3mm)
Note: This drawing is not to scale.

Ordering Information

PART NUMBERING INFORMATION			
Pins	Package	Lead Free Finish	
	Ordering Part Number ${ }^{1}$	Part Marking	
	TDFN	CM9311-01DE	

Note 1: Parts are shipped in Tape \& Reel form unless otherwise specified.

Specifications

ABSOLUTE MAXIMUM RATINGS		
PARAMETER	RATING	UNITS
ESD Protection (HBM)	± 2	kV
VIN to GND	$[G N D-0.3]$ to +6.0	V
Pin Voltages		V
VOUT, SW to GND	20	V
LED1, LED2, to GND	20	V
ISET1, VSET2, VREF, EN to GND	$[G N D-0.3]$ to +5.0	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)	300	

Specifications (cont'd)

ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE 1)

SYMBOL | | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OLED}}=1 \mu \mathrm{~F}, \mathrm{~L}_{1}=4.7 \mu \mathrm{H}$, interleave mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

V_{IN}	Input Voltage Range		2.7		6.0	V
I_{Q}	Quiescent Current	LED switching	1.2	2.0	mA	
$\mathrm{~V}_{\text {UVLO }}$	Undervoltage Lockout	$\mathrm{V}_{\text {IN }}$ Rising	2.0	2.2	2.4	V
$\mathrm{~V}_{\mathrm{OVP}}$	Output Overvoltage Protec- tion	$\mathrm{V}_{\text {OUT }}$ Rising	19.0	19.5	20.0	V
I_{SD}	Shutdown Current	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$		10	15	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {EN }}$	Device Enable Threshold	Device ON (by default) Device OFF	1.0		0.2	V

Channel 1 (WLED)

$\mathrm{I}_{\text {LED1 }}$	LED Current (Note 1)	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$ to 6.0V, $\mathrm{R}_{\text {SET } 1}(\mathrm{k} \Omega$ 4 WLED	2	$\frac{450}{\mathrm{R}_{\text {SET1 }}}$	35
	Number of WLEDs (Note 2)	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 6.0V	1		5
$\mathrm{~V}_{\text {LED1 }}$	Voltage on LED1 Pin	Standard load (Note 3)		0.80	

Channel 2 (OLED)

$\mathrm{V}_{\text {OLED }}$	OLED Voltage (Note 4)	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 6.0 V	8	$20 \times \mathrm{V}_{\text {VSET2 }}$	18	V
IoLED	OLED Current Range		2		30	mA
$\Delta \mathrm{V}_{\text {OLED }} / \mathrm{V}_{\text {OLED }}$	$V_{\text {OLED }}$ Regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.0 \mathrm{~V} \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OLED}}=5 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \end{aligned}$		5		\%
$\mathrm{V}_{\text {OLEDacc }}$	OLED Voltage Accuracy	1\% divider resistors		3		\%
$\mathrm{V}_{\text {REF }}$	Reference Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1.180	1.220	1.260	V
$\mathrm{I}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}$ Divider Current	(Recommended)	10	20	50	$\mu \mathrm{A}$
Boost Circuit (Note 3)						
$\Delta \mathrm{I}_{\text {LED }} / \mathrm{I}_{\text {LED }} \cdot \Delta \mathrm{V}_{\text {IN }}$	Line Regulation	$\mathrm{V}_{1 \mathrm{IN}}=3.0 \mathrm{~V}$ to 6.0V Each Channel		1		\%/V
IOUT	Boost Output Current	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 6.0 V	100			mA
$\mathrm{V}_{\text {OUT }}$	Boost Output Voltage	Standard Load (Note 3)	V_{IN}		20	V
$V_{\text {OUTR }}$	Output Voltage Ripple	Standard Load (Note 3)		50		mVpp
D	Duty Cycle Range	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LED}}=2 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{LED}} \mathrm{MAX} \end{aligned}$	5		95	\%
$\mathrm{R}_{\text {DSON }}$	MOSFET ON Resistance	$\mathrm{I}_{\text {SW }}=0.8 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=15 \mathrm{~V}$		300	500	$\mathrm{m} \Omega$
Eff	Efficiency	Standard Load (Note 3)		85		\%
Isw	Switch Peak Current	Standard Load (Note 3)		0.5		A
$\mathrm{P}_{\text {IN }}$	Input Power	$\mathrm{I}_{\text {LED 1,2 }}=20 \mathrm{~mA}, 4 \mathrm{WLED}+$ OLED		770		mW
Control						
$\mathrm{l}_{\text {LED acc }}$	Channel Current Matching (Note 5)	1\% R ${ }_{\text {SET }}$ Accuracy, Each Channel		3		\%
ILEDR	LED Current Ripple	Standard Load (Note 3)		0.2		mApp
ILEDNL	No-Load Mode (Note 5)	All Channels	0		0.6	mA

Specifications (cont'd)

ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE 1)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
fs	Switching Frequency	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 6.0 V	0.8	1.0	1.2	MHz

Note 1: $I_{\text {LED }}$ is the average PWM current through the LED string with internal $2 / 3$ duty cycle and a 6 ms period. The following formula must be used to calculate the LED current:

$$
\mathrm{I}_{\mathrm{LED}}(\mathrm{~mA})=\frac{450}{\mathrm{R}_{\mathrm{SET}(\mathrm{k} \Omega)}}
$$

Note 2: For lower LED forward voltage the number of LEDs can be increased up to the maximum output voltage limit.
Note 3: Standard Load is a 4 series x 2 parallel WLEDS configured for $\mathrm{I}_{\mathrm{LED} 1}=20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{SET} 1}=22 \mathrm{k} \Omega\right)$ and one OLED channel $(\mathrm{CH} 2)$ which drives $\mathrm{V}_{\mathrm{OLED}}=12 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{OLED}}=20 \mathrm{~mA}$.
Note 4: $\mathrm{V}_{\mathrm{VSET}}$, the voltage on VSET2 pin should be maintained in the $0.4 \mathrm{~V}-1.0 \mathrm{~V}$ range. The following formulas are related to OLED channel settings:

$$
\mathrm{V}_{\mathrm{OLED}}=\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{LED} 2}, \mathrm{~V}_{\mathrm{OLED}}=20 \times \mathrm{V}_{\mathrm{SET} 2}, \mathrm{~V}_{\mathrm{VSET}}=\frac{\mathrm{R}_{\mathrm{SET} 22}}{\mathrm{R}_{\mathrm{SET} 21}+\mathrm{R}_{\mathrm{SET} 22}} \times \mathrm{V}_{\mathrm{REF}}
$$

Note 5: [ILED(set) - ILED(effective)]/ILED(set) for each channel.
Note 6: A ILED value below 0.6 mA for each channel set the circuit in no-load mode; all channels and MOSFET switch are in shutdown and DC circuit current consumption is limited to 1 mA (see quiescent current).

Typical Performance Curves

Functional Block Diagram

Pin Descriptions

PIN DESCRIPTIONS		
LEAD(s)	NAME	DESCRIPTION
1	ISET1	Channel 1 LED current set pin. Between this pin and GND connect the R RET1 resistor, calculated as follows: $\mathrm{R}_{\mathrm{SET} 1}(\mathrm{k} \Omega)=\frac{450}{\mathrm{I}_{\mathrm{LED} 1(\mathrm{~mA})}}$ where $\mathrm{I}_{\text {LED } 1}$ is the DC LED current in channel 1.
2	LED1	Pin to cathode of channel 1 LED string.
3	VREF	Reference voltage output pin, used to bias VSET2 node.
4	VSET2	The voltage on this pin sets the VOLED as follows: $\mathrm{V}_{\text {OLED }}=20 \times \mathrm{V}_{\text {SET2 }}$
5	LED2	Pin to cathode of channel 2 LED string.
6	VIN	Input supply voltage pin. Bypass with a $10 \mu \mathrm{~F}$ or larger ceramic capacitor to ground.
7	GND	Ground terminal pin.
8	SW	Switching node. Internally connected to the drain of the integrated switch.
9	VOUT	Output voltage pin, which connects to the anodes of all LEDs. Bypass with a $1.0 \mu \mathrm{~F}$ or greater ceramic capacitor to ground for low output ripple voltage.
10	EN	Enable pin. The circuit is ON when V_{EN} is above 1.0 V . The circuit is OFF when V_{EN} is below 0.2V. Active High (ON) by default.
EPad	GND	Ground; backside exposed pad.

[^0]
Application Information

The CM9311 is a high efficiency, magnetic switchmode converter with current and voltage regulation driver ideally suited for driving white LEDs and OLED in Li-ion powered portable devices. The CM9311 is an asynchronous boost converter uses a low-resistance internal NMOS to drive small external inductor and Schottky diode. The CM9311 is the perfect converter for portable applications such as cellular phones, digital still cameras, PDAs and any application where small space, compact overall size and low system cost are critical.

With a maximum 19V/100mA output capability, the circuit can drive up to 5 WLEDs (4 series x 1 parallel) and one OLED device, allowing up to 35 mA per channel. It includes a switch and an internally compensated loop for regulating the current into the LEDs. The CM9311 delivers a constant current to series-connected LEDs and a constant voltage to OLED, ensuring uniform brightness and color purity regardless of any LED forward voltage variations.

The proprietary design architecture allows asymmetrical loading on each channel and maintains high efficiency (typ 85\%) at low V_{IN} resulting in longer battery life, and cool, reliable operation when an adapter is supplying high V_{IN}. The maximum LED current or OLED voltage is independently programmed with external low power resistors avoiding ballast resistors.
An 1 MHz constant frequency PWM scheme saves board space with the use of small, low cost external components, allowing designers to avoid sensitive IF bands in RF applications. The circuit operates with low value inductors and low value output ceramic capacitors keeping voltage and current ripple in the 1% range.

The output over-voltage protection circuit prevents damage in the case of high impedance output (e.g. faulty LED). The controlled current limit circuit limit prevents large inductor current spikes, even at start-up. To avoid possible leakage currents the EN control pin disconnects the LEDs from ground during shutdown.

CM9311 Operation

When a voltage that exceeds the undervoltage lockout threshold (UVLO) is applied to the VIN pin, the CM9311 initiates a softstart which limits the inrush current while the output capacitors are charged. Following softstart, the CM9311's internal NMOS drives an exter-
nal inductor and Schottky diode delivers the inductor's stored energy to the load.

Setting the LED Current

The output current for channel 1 (up to 35 mA) is set by the value of its $R_{\text {SET }}$ resistor, located between the ISET1 pin and GND, according to the equations:

$$
\mathrm{R}_{\mathrm{SET}}(\mathrm{k} \Omega)=\frac{450}{\mathrm{I}_{\mathrm{LED}(\mathrm{~mA})}}
$$

Setting the OLED Voltage

The output voltage for the OLED is the difference between $\mathrm{V}_{\text {OUT }}$ and the voltage at $\mathrm{I}_{\text {LED2 }}$ pin. The voltage is programmed using the voltage divider R22 and R21, according to the equation:
$\mathrm{V}_{\text {OLED }}=20 \times \mathrm{V}_{\text {SET2 }}$

PWM Brightness Control

The brightness WLEDs level can be continuously controlled for each channel using a PWM signal in 1-50 KHz range (recommended value is 10 kHz). As an example the PWM signal can be applied directly through $R_{\text {SET }}$ resistor for negative slope or by using a switch transistor for positive slope. See Figure 1 for different brightness control methods and results. Method A means negative slop and Method B means positive slope.

Application Information (cont'd)

Figure 1. Brightness Control Using Different Methods

Inductor Selection

The inductor is used to store energy in a boost converter. The amount of energy stored in the inductor and transferred to the load is controlled by the PWM. The inductor is operated in the discontinuous conduction mode, and to assume proper operation, the inductor value must be limited to a maximum value.

An inductor with low series resistance (DCR) decreases power losses and increases efficiency. The core material should be capable of operating at I MHz with minimal core losses. An inductance of $4.7 \mu \mathrm{H}$ is optimum for most applications, but low DCR inductor values in $1.5-15 \mu \mathrm{H}$ range are also recommended for high efficiency applications.
To ensure proper operation of the current regulator over a wide range of conditions, the inductor should be
selected based on the required load power and the minimum input voltage. The saturation current rating should be chosen well above the steady state peak inductor current. At minimum V_{IN} and full duty cycle (worse case), this is approximately:

$$
\mathrm{I}_{\mathrm{PEAK}} \cong \frac{\mathrm{~V}_{\mathrm{IN}(\mathrm{MIN})} \times \mathrm{t}_{\mathrm{ON}}}{\mathrm{~L}} \cong \frac{3 \mathrm{~V} \times 0.8 \times \frac{1}{1 \mathrm{MHz}}}{4.7 \mu \mathrm{H}} \cong 0.5 \mathrm{~A}
$$

Diode Selection

The low forward voltage and fast switching time make Schottky diodes the choice for high efficiency operation. Make sure the diode has a reverse voltage rating greater than the maximum output voltage. The diode conducts only when the power switch is on, so a peak current rating above 1 A should be sufficient for a typical design.

Capacitor Selection

For proper performance, use surface-mount, low ESR ceramic capacitors for $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$. X7R or X5R ceramic dielectric provides good stability over the operating temperature and voltage range.
In most LED applications, high frequency output ripple is not a concern because it will not cause intensity variations that are visible to the human eye.
For such applications, when low ripple is needed, a $22 \mu \mathrm{~F}$ input capacitor and/or $2.2 \mu \mathrm{~F}$ output capacitor are recommended.

$\begin{aligned} & \hline \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	SOURCE
$\mathrm{C}_{\text {IN }}$	Capacitor, $10 \mu \mathrm{~F}$, 10V, Ceramic, 1206	Murata, GRM319R61A106KE19D Vishay, VJ1206G106KXQ
$\mathrm{C}_{\text {OUT }}$	Capacitor, $1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic, 0805	Murata, GRM188R61C105KA93D TDK, C2012X5R1C105K
L_{1}	Inductor, $4.7 \mu \mathrm{H}, 1 \mathrm{~A}$, Low DCR	Coilcraft, LP06013-472ML TMP Electronics Co., SPC-03802-4R7 CHILISIN, SCD03015-4R7 SUMIDA, CDH3D13/S4R7
D_{1}	Schottky Diode, 1A, 20V, SMD	IR, MBRS120 CHENMKO, SSM5817S

Input Filter

If CM9311 is more than $4^{\prime \prime}$ from main power supply point, use an input RC filter to avoid high ripple and input transients to the circuit input pin (see Figure 2).

Application Information (cont'd)

In this case, because of small input ripple, the efficiency is about 2% higher.

Figure 2. Input Filter Solution

Layout Guide

Components should be placed as close as practical to the IC to assure good performance. The input and output capacitors should be close, with minimum trace resistance and inductance. Reflected input ripple depends on the impedance of the VIN source, such as the PCB traces and the Li-ion battery, which has elevated impedance at higher frequencies. The input capacitor located near the converter input reduces this source impedance and ripple. Any ESR from the capacitor will result in steps and spikes in the ripple waveform, and possibly produce EMI.

Route any noise sensitive traces away from the switching power components. Place the inductor and diode as close as possible to the SW pin to prevent noise emissions.

The ground connections for $\operatorname{RSET}(1,21,22)$ resistors should be kept separate from the high power grounds and connect directly to the ground pin to assure accurate current and voltage settings. For better heat flow, connect all NC pins to GND plane. Also connect the thermal landing to the bottom ground plane with thermal vias.

Figure 3. Example CM9311 PC Layout and Compnent Placement for Standard Application

Mechanical Details

TDFN-10 Mechanical Specifications
Dimensions for the CM9311 packaged in a 10-lead TDFN package are presented below.
For complete information on the TDFN-10, see the California Micro Devices TDFN Package Information document.

PACKAGE DIMENSIONS						
Package	TDFN					
JEDEC No.	MO-229 (Var. WEED-3) $=$					
Leads	10					
Dim.	Millimeters			Inches		
	Min	Nom	Max	Min	Nom	Max
A	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.02	0.05	0.000	0.001	0.002
A2	0.45	0.55	0.65	0.018	0.022	0.026
A3		0.20			0.008	
b	0.18	0.25	0.30	0.007	0.010	0.012
D		3.00			0.118	
D2	2.20	2.30	2.40	0.087	0.091	0.094
E		3.00			0.118	
E2	1.40	1.50	1.60	0.055	0.060	0.063
e		0.50			0.020	
K	1.30	1.50	1.70	0.051	0.060	0.067
L	0.20	0.30	0.40	0.008	0.012	0.016
\# per tube	NA					
\# per tape and reel	3000 pieces					
Controlling dimension: millimeters						

${ }^{=}$This package is compliant with JEDEC standard MO-229, variation WEED-3 with exception of the "D2" and "E2" dimensions as called out in the table above.

Package Dimensions for 10-Lead TDFN

[^0]: © 2006 California Micro Devices Corp. All rights reserved.

