

虹冠電子工業股份有限公司

Champion Microelectronic Corporation

Specialized in Integrated High Efficient Switching Power Management Solutions

上海台永商贸有限公司

SHANGHAI TAIYONG CO., LTD

上海市普陀区桐柏路 165 弄 1 号 101-103 室

(上海)TEL:86-21-59512136 (上海)FAX:86-21-59512123

E-mail: shanghai@shanghai-taiyong.com

E-mail: shanghai@yny-gsm.com

东筦办事处

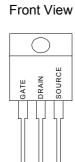
SHANGHAI TAIYONG CO., LTD

东省东莞市长安镇乌沙江贝村同和四巷 15号

(东莞) TEL:86-769-5373287 (东莞) FAX:86-769-5373286

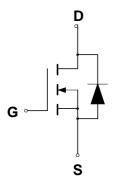
E-mail: dong-guan@shanghai-taiyong.com

E-mail: dong-guan@yny-gsm.com


GENERAL DESCRIPTION

This Power MOSFET is designed to withstand high energy in avalanche and commutation modes. The new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional and safety margin against unexpected voltage transients.

FEATURES


- Robust High Voltage Termination
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- ◆ Diode is Characterized for Use in Bridge Circuits
- ♦ I_{DSS} and V_{DS}(on) Specified at Elevated Temperature

PIN CONFIGURATION

TO-220

SYMBOL

N-Channel MOSFET

ORDERING INFORMATION

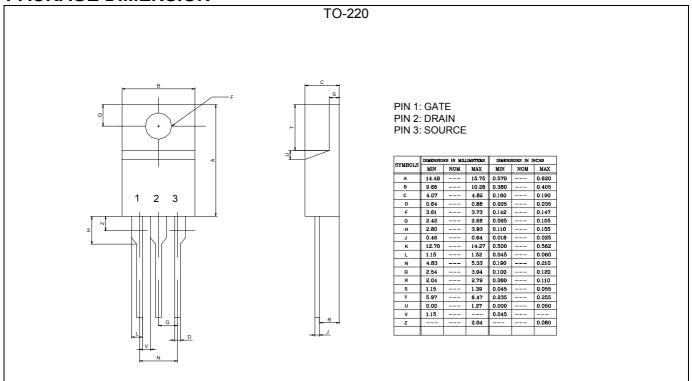
Part Number	Package	
CMT20N15N220	TO-220	

ABSOLUTE MAXIMUM RATINGS

Rating		Value	Unit
Drain to Current — Continuous		20	Α
Pulsed	I _{DM}	60	
Gate-to-Source Voltage — Continue	V_{GS}	±20	V
Non-repetitive	V_{GSM}	±32	V
Total Power Dissipation	P _D	112	W
Derate above 25℃		0.9	W/°C
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to 150	$^{\circ}\mathbb{C}$
Single Pulse Drain-to-Source Avalanche Energy $-T_J = 25^{\circ}$ C	E _{AS}	60	mJ
$(V_{DD} = 100V, V_{GS} = 10V, I_{L} = 20A, L = 10mH, R_{G} = 25\Omega)$			
Thermal Resistance — Junction to Case	θ_{JC}	1.1	°C/W
 Junction to Ambient 	θ_{JA}	62.5	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	$^{\circ}\!\mathbb{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_J = 25^{\circ}C$.


				CMT20N15		
Characteristic		Symbol	Min	Тур	Max	Units
Drain-Source Breakdown Voltage		V _{(BR)DSS}	150			V
$(V_{GS} = 0 \text{ V}, I_D = 250 \ \mu \text{ A})$						
Drain-Source Leakage Current		I _{DSS}				μA
$(V_{DS} = 150 \text{ V}, V_{GS} = 0 \text{ V})$					10	
$(V_{DS} = 150 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C})$					100	
Gate-Source Leakage Current-Forward		I _{GSSF}			100	nA
$(V_{gsf} = 20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate-Source Leakage Current-Reverse		I _{GSSR}			100	nA
$(V_{gsr} = 20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate Threshold Voltage	·	$V_{GS(th)}$	2.0		4.0	V
$(V_{DS} = V_{GS}, I_D = 250 \ \mu A)$						
Static Drain-Source On-Resistance (V _{GS} =	10 V, I _D = 10A) *	R _{DS(on)}		0.12	0.13	Ω
Drain-Source On-Voltage (V _{GS} = 10 V)		$V_{DS(on)}$			2.8	V
$(I_D = 10.0 \text{ A})$						
Forward Transconductance (V_{DS} = 13 V, I_{I}	o = 10A) *	g _{FS}	8.0	11		mhos
Input Capacitance	// - 25 // // - 0 //	C_{iss}		1133	1627	pF
Output Capacitance	$(V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz)	Coss		332	474	pF
Reverse Transfer Capacitance		C_{rss}		105	174	pF
Turn-On Delay Time	$(V_{DD} = 75 \text{ V}, I_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V},$ $R_G = 9.1\Omega) *$	t _{d(on)}		11	25	ns
Rise Time		t _r		77	153	ns
Turn-Off Delay Time		$t_{d(off)}$		33	67	ns
Fall Time		t _f		49	97	ns
Total Gate Charge	(V _{DS} = 120 V, I _D = 20 A, V _{GS} = 10 V)*	Qg		39.1	55.9	nC
Gate-Source Charge		Q_{gs}		7.5		nC
Gate-Drain Charge		Q_{gd}		22		nC
Internal Drain Inductance		L _D		4.5		nΗ
(Measured from the drain lead 0.25" from	m package to center of die)					
Internal Drain Inductance		Ls		7.5		nH
(Measured from the source lead 0.25" fr	rom package to source bond pad)					
SOURCE-DRAIN DIODE CHARACTERIS	STICS					
Forward On-Voltage(1)	$(I_S = 20 \text{ A}, V_{GS} = 0 \text{ V},$ $d_{IS}/d_t = 100\text{A}/\mu\text{s})$	V _{SD}			1.5	V
Forward Turn-On Time		t _{on}		**		ns
Reverse Recovery Time		t _{rr}		160		ns

^{*} Pulse Test: Pulse Width $\,\leq\!300\mu\text{s},\,\text{Duty Cycle}\,\,\leq\!2\%$

^{**} Negligible, Dominated by circuit inductance

PACKAGE DIMENSION

上海台永商貿有限公司

SHANGHAI SALES DEPT.

上海台永商貿有限公司
SHANGHAI TAIYONG CO., LTD
上海市普陀區桐柏路 165 弄 1 號
101-103 室

(上海)TEL:86-21-59512136 (上海)FAX:86-21-59512123

E-mail:

shanghai@shanghai-taiyong.com

E-mail:

shanghai@yny-gsm.com

INVERTER LAB & Sales Dept . DONG-GUAN,CHINA

東省東莞市長安鎮烏沙江貝村同和 四巷 15 號

(東莞) TEL:86-769-5373287 (東莞) FAX:86-769-5373286

E-mail:

dong-guan@shanghai-taiyong.com

E-mail:

dong-guan@yny-gsm, com

CERAMIC/SURGE ABSORBER SHANGHAI,CHINA

DIODES LAB HANGZHOU,CHINA

CERAMIC/PZT SHINCHU,TAIWAN

DC POWER LAB TAIPEI, TAIWAN