
8K/16K x 9 Synchronous Dual-Port Static RAM

Features

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- 2 Flow-Through/Pipelined devices
 - -8K x 9 organization (CY7C09159)
 - 16K x 9 organization (CY7C09169)
- 3 Modes
 - Flow-Through
 - Pipelined
 - Burst
- · Pipelined output mode on both ports allows fast 100-MHz cycle time
- · 0.35-micron CMOS for optimum speed/power

- High-speed clock to data access 6.5/7.5/12 ns (max.)
- · Low operating power
 - Active= 200 mA (typical)
 - Standby= 0.05 mA (typical)
- Fully synchronous interface for easier operation
- · Burst counters increment addresses internally
 - Shorten cycle times
 - Minimize bus noise
 - Supported in Flow-Through and Pipelined modes
- · Dual Chip Enables for easy depth expansion
- Automatic power-down
- · Commercial and Industrial temperature ranges
- Available in 100-pin TQFP

1. A_0 - A_{12} for 8K; A_0 - A_{13} for 16K.

Functional Description

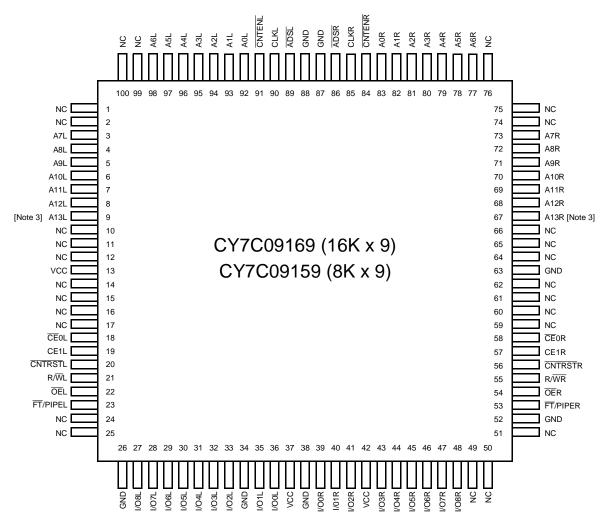
The CY7C09159 and CY7C09169 are high speed synchronous CMOS 8K and 16K x 9 dual-port static RAMs. Two ports are provided, permitting independent, simultaneous access for reads and writes to any location in memory. [2] Registers on control, address, and data lines allow for minimal set-up and hold times. In pipelined output mode, data is registered for decreased cycle time. Clock to data valid $t_{CD2} = 6.5$ ns (pipelined). Flow-through mode can also be used to bypass the pipelined output register to eliminate access latency. In flow-through mode data will be available $t_{CD1} = 15$ ns after the address is clocked into the device. Pipelined output or flow-through mode is selected via the \overline{FT} /Pipe pin.

Each port contains a burst counter on the input address register. The internal write pulse width is independent of the LOW-to-HIGH transition of the clock signal. The internal write pulse is self-timed to allow the shortest possible cycle times.

A HIGH on $\overline{\text{CE}}_0$ or LOW on CE_1 for one clock cycle will power down the internal circuitry to reduce the static power consumption. The use of multiple Chip Enables allows easier banking of multiple chips for depth expansion configurations. In the pipelined mode, one cycle is required with $\overline{\text{CE}}_0$ LOW and CE_1 HIGH to reactivate the outputs.

Counter enable inputs are provided to stall the operation of the address input and utilize the internal address generated by the internal counter for fast interleaved memory applications. A port's burst counter is loaded with the port's address strobe (ADS). When the port's count enable (CNTEN) is asserted, the address counter will increment on each LOW-to-HIGH transistion of that port's clock signal. This will read/write one word from/into each successive address location until CNTEN is deasserted. The counter can address the entire memory array and will loop back to the start. Counter reset (CNTRST) is used to reset the burst counter.

All parts are available in 100-pin Thin Quad Plastic Flatpack (TQFP) packages.


Note:

2. When simultaneously writing to the same location, final value cannot be guaranteed.

Pin Configurations

Note:

3. This pin is NC for CY7C09159.

Selection Guide

	CY7C09159 CY7C09169 -6	CY7C09159 CY7C09169 -7	CY7C09159 CY7C09169 -12
f _{MAX2} (MHz) (Pipelined)	100	83	50
Max Access Time (ns) (Clock to Data, Pipelined)	6.5	7.5	12
Typical Operating Current I _{CC} (mA)	250	235	195
Typical Standby Current for I _{SB1} (mA) (Both Ports TTL Level)	45	40	30
Typical Standby Current for I _{SB3} (mA) (Both Ports CMOS Level)	0.05	0.05	0.05

Pin Definitions

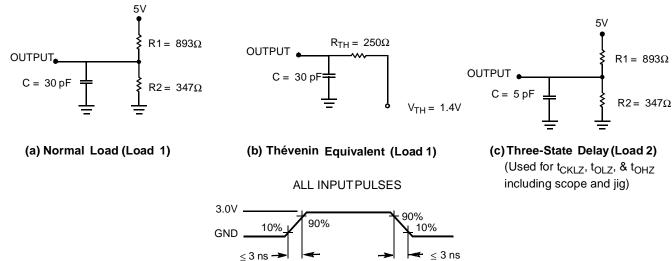
Left Port	Right Port	Description
A _{0L} -A _{13L}	A _{0R} -A _{13R}	Address Inputs. (A ₀ –A ₁₂ for 8K; A ₀ –A ₁₃ for 16K devices)
ADS _L	ADS _R	Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW during normal read or write transactions. Asserting this signal LOW also loads the burst address counter with data present on the I/O pins.
CE _{0L} ,CE _{1L}	CE _{0R} ,CE _{1R}	Chip Enable Input. To select either the left or right port, both \overline{CE}_0 AND CE_1 must be asserted to their active states $(\overline{CE}_0 \le V_{IL} \text{ and } CE_1 \ge V_{IH})$.
CLK _L	CLK _R	Clock Signal. This input can be free running or strobed. Maximum clock input rate is f _{MAX} .
CNTENL	CNTEN _R	Counter Enable Input. Asserting this signal <u>LOW</u> increments the <u>burst</u> address counter of its respective port on each rising edge of CLK. <u>CNTEN</u> is disabled if <u>ADS</u> or <u>CNTRST</u> are asserted LOW.
CNTRST _L	CNTRST _R	Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respective port to zero. CNTRST is not disabled by asserting ADS or CNTEN.
I/O _{0L} –I/O _{8L}	I/O _{0R} –I/O _{8R}	Data Bus Input/Output (I/O ₀ –I/O ₇ for x8 devices; I/O ₀ –I/O ₈ for x9 devices).
ŌĒL	ŌE _R	Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read operations.
R/W _L	R/W _R	Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array. For read operations, assert this pin HIGH.
FT/PIPE _L	FT/PIPE _R	Flow-Through/Pipelined Select Input. For flow-through mode operation, assert this pin LOW. For pipelined mode operation, assert this pin HIGH.
GND		Ground Input.
NC		No Connect.
V _{CC}		Power Input.

Maximum Ratings

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%


Electrical Characteristics Over the Operating Range

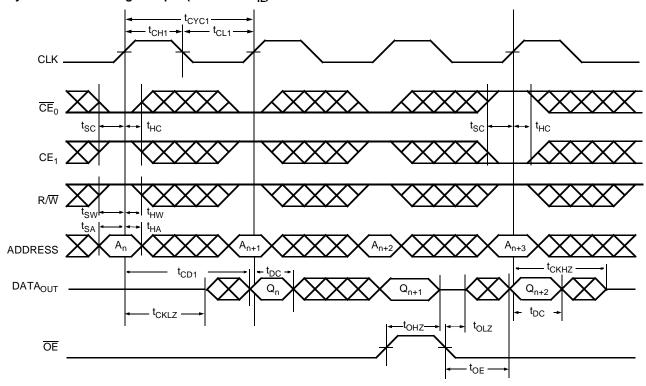
			CY7C09159 CY7C09169									
			-6 -7 -12							1		
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage (V _{CC} = I _{OH} =-4.0 mA)	Min,	2.4			2.4			2.4			V
V _{OL}	Output LOW Voltage (V _{CC} = I _{OH} = +4.0 mA)	Min,			0.4			0.4			0.4	V
V _{IH}	Input HIGH Voltage		2.2			2.2			2.2			V
V_{IL}	Input LOW Voltage				0.8			0.8			0.8	V
I _{OZ}	Output Leakage Current		-10		10	-10		10	-10		10	μΑ
I _{CC}	Operating Current	Com'l.		250	450		235	420		195	300	mA
	(V _{CC} =Max, I _{OUT} =0 mA) Outputs Disabled	Indust.					260	445		225	375	mA
I _{SB1}	Standby Current (Both	Com'l.		45	115		40	105		30	85	mA
	Ports TTL Level) ^[4] \overline{CE}_L & $\overline{CE}_R \ge V_{IH}$, f=f _{MAX}	Indust.					55	120		45	100	mA
I _{SB2}	Standby Current (One Port	Com'l.		175	235		160	220		125	190	mA
	TTL Level) ^[4] \overline{CE}_L $\overline{CE}_R \ge V_{IH}$, f=f _{MAX}	Indust.					175	235		140	205	mA
I _{SB3}	Standby Current (Both	Com'l.		0.05	0.25		0.05	0.25		0.05	0.25	mA
	Ports CMOS Level) ^[4] \overline{CE}_L & $\overline{CE}_R \ge V_{CC} - 0.2V$, f=0	Indust.					0.05	0.25		0.05	0.25	mA
I _{SB4} Standby Current (On	Standby Current (One Port	Com'l.		160	200		145	185		110	150	mA
	CMOS Level) ^[4] CE _L CE _R ≥ V _{IH} , f=f _{MAX}	Indust.					160	200		125	165	mA

Capacitance

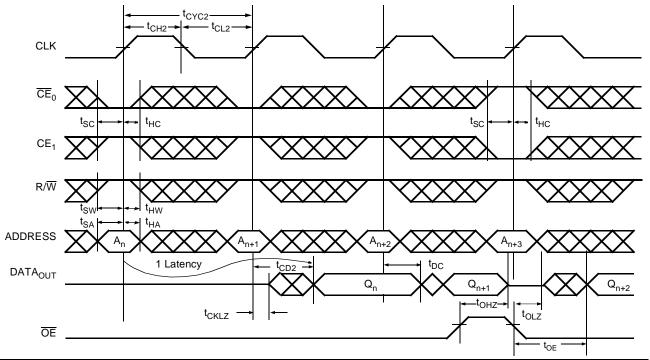
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

AC Test Loads

^{4.} \overline{CE}_L and \overline{CE}_R are internal signals. To select either the left or right port, both \overline{CE}_0 AND CE_1 must be asserted to their active states ($\overline{CE}_0 \le V_{IL}$ and $CE_1 \ge V_{IH}$).


Switching Characteristics Over the Operating Range

MAX1			CY7C09159 CY7C09169							
MAX1			-	·6	-	7		12		
f _{MAX2} f _{Max} Pipelined to type Time - Flow-Through 19 22 30 ns t _{CYC2} Clock Cycle Time - Flow-Through 19 22 30 ns t _{CYC2} Clock Cycle Time - Pipelined 10 12 20 ns t _{CH1} Clock HIGH Time - Flow-Through 6.5 7.5 12 ns t _{CL1} Clock LOW Time - Pipelined 4 5 8 ns t _{CL2} Clock HIGH Time - Pipelined 4 5 8 ns t _{CL2} Clock Rise Time 3 3 3 ns t _R Clock Rise Time 3 3 3 ns t _R Clock Fall Time 3.5 4 4 ns t _{BA} Address Set-up Time 3.5 4 4 ns t _{BA} Chip Enable Bold Time 0 0 1 ns t _{BC} Chip Enable Hold Time 0 0 1 ns t _{HW} RW Hold Time 0	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	
t _{CYC1} Clock Cycle Time - Flow-Through 19 22 30 ns t _{CYC2} Clock Cycle Time - Pipelined 10 12 20 ns t _{CH1} Clock Cycle Time - Pipelined 10 12 20 ns t _{CL1} Clock LOW Time - Flow-Through 6.5 7.5 12 ns t _{CL2} Clock HIGH Time - Pipelined 4 5 8 ns ns t _{CL2} Clock LOW Time - Pipelined 4 5 8 ns ns t _{CL2} Clock RIGH Time - Pipelined 4 5 8 ns ns t _R Clock RIGH Time - Pipelined 4 5 8 ns ns t _R Clock RIGH Time - Pipelined 4 5 8 ns ns t _R Clock Right Time 3.5 4 4 4 ns t _R Clock Right Time 3.5 4 4 4 ns t _R Chip Enable Hold Time 3.5	f _{MAX1}	f _{Max} Flow-Through		53		45		33	MHz	
t _{CyC2} Clock Cycle Time - Pipelined 10 12 20 ns t _{CHH} Clock HIGH Time - Flow-Through 6.5 7.5 12 ns t _{CL1} Clock LOW Time - Flow-Through 6.5 7.5 12 ns t _{CH2} Clock LOW Time - Pipelined 4 5 8 ns t _{CL2} Clock Rise Time 3 3 3 3 ns t _R Clock Rise Time 3 3 3 3 ns t _R Clock Fall Time 3.5 4 4 4 ns t _A Address Set-up Time 3.5 4 4 ns t _A Address Hold Time 0 0 1 ns t _{SC} Chip Enable Bot-up Time 3.5 4 4 4 ns t _{SC} Chip Enable Hold Time 0 0 1 ns t _W RW Bot Hold Time 0 0 1 ns t _{BW} RW Hol	f _{MAX2}	f _{Max} Pipelined		100		83		50	MHz	
tOH1 Clock HIGH Time - Flow-Through 6.5 7.5 12 ns tCL1 Clock LOW Time - Flow-Through 6.5 7.5 12 ns tCH2 Clock LOW Time - Pipelined 4 5 8 ns tCL2 Clock Rise Time 4 5 8 ns tR Clock Rise Time 3 3 3 3 ns tR Clock Fall Time 3 3 3 3 ns tsA Address Set-up Time 3.5 4 4 4 ns tsA Address Hold Time 0 0 1 ns tsC Chip Enable Hold Time 0 0 1 ns tsC Chip Enable Hold Time 0 0 1 ns tsW R/W Set-up Time 3.5 4 4 4 ns tsW R/W Hold Time 0 0 1 ns ns tsD Input Data Set-up Time	t _{CYC1}	Clock Cycle Time - Flow-Through	19		22		30		ns	
tol.1 Clock LOW Time - Flow-Through 6.5 7.5 12 ns tol.2 Clock HIGH Time - Pipelined 4 5 8 ns tol.2 Clock LOW Time - Pipelined 4 5 8 ns tol.2 Clock Rise Time 3 3 3 3 ns tol.2 Clock Fall Time 3 3 3 3 ns tsA Address Set-up Time 3.5 4 4 4 ns thA Address Hold Time 0 0 0 1 ns tsC Chip Enable Set-up Time 3.5 4 4 4 ns tsC Chip Enable Hold Time 0 0 1 ns tsW R/W Set-up Time 3.5 4 4 4 ns tsW R/W Set-up Time 3.5 4 4 4 ns tsBD Input Data Hold Time 0 0 1 ns tsAD	t _{CYC2}	Clock Cycle Time - Pipelined	10		12		20		ns	
tCH2 Clock HIGH Time - Pipelined 4 5 8 ns tCL2 Clock LOW Time - Pipelined 4 5 8 ns tR Clock Rise Time 3 3 3 3 ns tF Clock Fall Time 3 3 3 ns ns tSA Address Set-up Time 3.5 4 4 4 ns tSA Address Hold Time 0 0 1 ns ns tSC Chip Enable Set-up Time 3.5 4 4 4 ns tBC Chip Enable Hold Time 0 0 1 ns ns tSW RW Set-up Time 3.5 4 4 4 ns tSW RW Hold Time 0 0 1 ns ns tBD Input Data Hold Time 0 0 1 ns ns tBD Input Data Hold Time 0 0 1 ns ns	t _{CH1}	Clock HIGH Time - Flow-Through	6.5		7.5		12		ns	
tCL2 Clock LOW Time - Pipelined 4 5 8 ns tR Clock Rise Time 3 3 3 ns tp Clock Rall Time 3 3 3 ns tsA Address Set-up Time 3.5 4 4 4 ns thA Address Hold Time 0 0 1 ns tsC Chip Enable Set-up Time 3.5 4 4 4 ns tsC Chip Enable Hold Time 0 0 1 ns tsW RW Set-up Time 3.5 4 4 4 ns tsW RW Set-up Time 3.5 4 4 ns ns tsD Input Data Bet-up Time 3.5 4 4 4 ns tBD Input Data Hold Time 0 0 1 ns tBAD ADS Set-up Time 3.5 4 4 4 ns tBAD ADS Hold Time 0<	t _{CL1}	Clock LOW Time - Flow-Through	6.5		7.5		12		ns	
tR Clock Rise Time 3 3 3 ns tF Clock Fall Time 3.5 4 4 4 ns tSA Address Set-up Time 3.5 4 4 4 ns tHA Address Hold Time 0 0 0 1 ns tSC Chip Enable Set-up Time 3.5 4 4 4 ns tHC Chip Enable Hold Time 0 0 1 ns tHC Chip Enable Hold Time 0 0 1 ns tHC Chip Enable Hold Time 0 0 1 ns tHW RW Bold Time 0 0 1 ns tSM ADS Set-up Time 3.5 4 4 4 ns tHAD ADS Hold Time 0 0 1 ns ts tSCN CNTEN Set-up Time 3.5 4 4 4 ns tHAD ADS Hold Time <	t _{CH2}	Clock HIGH Time - Pipelined	4		5		8		ns	
tF Clock Fall Time 3 3 ns tSA Address Set-up Time 3.5 4 4 4 ns tHA Address Hold Time 0 0 1 ns tSC Chip Enable Set-up Time 3.5 4 4 ns tHC Chip Enable Hold Time 0 0 1 ns tSW R/W Set-up Time 3.5 4 4 4 ns tSW R/W Hold Time 0 0 1 ns ns tBO Input Data Set-up Time 3.5 4 4 ns ns tBO Input Data Hold Time 0 0 1 ns ns tBO Input Data Hold Time 0 0 1 ns ns tBAD ADS Set-up Time 3.5 4 4 ns ns tBAD ADS Hold Time 0 0 1 ns ns tBAST CNTEN Set-up Time	t _{CL2}	Clock LOW Time - Pipelined	4		5		8		ns	
t _{SA} Address Set-up Time 3.5 4 4 4 ns t _{HA} Address Hold Time 0 0 1 ns t _{SC} Chip Enable Set-up Time 3.5 4 4 4 ns t _{HC} Chip Enable Hold Time 0 0 1 ns t _{SW} R/W Set-up Time 3.5 4 4 4 ns t _{WW} R/W Hold Time 0 0 0 1 ns t _{HW} R/W Hold Time 0 0 0 1 ns t _{SW} Input Data Set-up Time 3.5 4 4 4 ns t _{BD} Input Data Hold Time 0 0 1 ns t _{ADD} ADS Set-up Time 3.5 4 4 4 ns t _{SAD} ADS Hold Time 0 0 1 ns t_C t _{CN} CNTEN Set-up Time 3.5 4 4 4 ns <	t _R	Clock Rise Time		3		3		3	ns	
tHA Address Hold Time 0 0 1 ns tSC Chip Enable Set-up Time 3.5 4 4 4 ns tHC Chip Enable Hold Time 0 0 0 1 ns tSW R/W Set-up Time 3.5 4 4 4 ns tHW R/W Hold Time 0 0 1 ns tBD Input Data Set-up Time 3.5 4 4 ns tBD Input Data Hold Time 0 0 1 ns tBD Input Data Hold Time 0 0 1 ns tSAD ADS Set-up Time 3.5 4 4 ns tBAD ADS Hold Time 0 0 1 ns tSCN CNTEN Set-up Time 3.5 4 4 ns tHACN CNTEN Hold Time 0 0 1 ns tBRST CNTRST Hold Time 0 0 1 ns <td></td> <td>Clock Fall Time</td> <td></td> <td>3</td> <td></td> <td>3</td> <td></td> <td>3</td> <td>ns</td>		Clock Fall Time		3		3		3	ns	
t _{HA} Address Hold Time 0 0 1 ns t _{SC} Chip Enable Set-up Time 3.5 4 4 4 ns t _{HC} Chip Enable Hold Time 0 0 1 ns t _{SW} R/W Set-up Time 3.5 4 4 4 ns t _{HW} R/W Hold Time 0 0 1 ns t _{HW} R/W Hold Time 0 0 1 ns t _{BD} Input Data Hold Time 0 0 1 ns t _{BD} Input Data Hold Time 0 0 1 ns t _{HAD} ADS Set-up Time 3.5 4 4 ns t _{SAD} ADS Set-up Time 3.5 4 4 ns t _{SCN} CNTEN Set-up Time 3.5 4 4 ns t _{SCN} CNTEN Hold Time 0 0 1 ns t _{SRST} CNTRST Set-up Time 3.5 4 4 4 </td <td>t_{SA}</td> <td>Address Set-up Time</td> <td>3.5</td> <td></td> <td>4</td> <td></td> <td>4</td> <td></td> <td>ns</td>	t _{SA}	Address Set-up Time	3.5		4		4		ns	
tsc Chip Enable Set-up Time 3.5 4 4 4 ns tHC Chip Enable Hold Time 0 0 1 ns tsw R/W Set-up Time 3.5 4 4 4 ns tHW R/W Hold Time 0 0 0 1 ns tsp Input Data Set-up Time 3.5 4 4 4 ns tHD Input Data Hold Time 0 0 1 ns tsAD ADS set-up Time 3.5 4 4 ns tsAD ADS Hold Time 0 0 1 ns tsCN CNTEN Set-up Time 3.5 4 4 ns tsCN CNTEN Hold Time 0 0 1 ns tsRST CNTRST Set-up Time 3.5 4 4 ns thRST CNTRST Hold Time 0 0 1 ns toL Output Enable to Data Valid 8 9		Address Hold Time	0		0		1		ns	
thC Chip Enable Hold Time 0 0 1 ns tsW R/W Set-up Time 3.5 4 4 4 ns thW R/W Hold Time 0 0 0 1 ns tsD Input Data Set-up Time 3.5 4 4 4 ns thD Input Data Hold Time 0 0 1 ns tsAD ADS Set-up Time 3.5 4 4 ns thAD ADS Hold Time 0 0 1 ns tSCN CNTEN Set-up Time 3.5 4 4 ns tHCN CNTEN Hold Time 0 0 1 ns tSRST CNTEN TS Set-up Time 3.5 4 4 ns thRST CNTEN Hold Time 0 0 1 ns tsRST CNTEN TS Hold Time 0 0 1 ns toC Output Enable to Data Valid 8 9 12 <t< td=""><td></td><td>Chip Enable Set-up Time</td><td>3.5</td><td></td><td>4</td><td></td><td>4</td><td></td><td>ns</td></t<>		Chip Enable Set-up Time	3.5		4		4		ns	
tsw R/W Set-up Time 3.5 4 4 4 ns thw R/W Hold Time 0 0 1 ns tsp Input Data Set-up Time 3.5 4 4 4 ns thD Input Data Hold Time 0 0 1 ns tsAD ADS Set-up Time 3.5 4 4 4 ns thAD ADS Hold Time 0 0 1 ns tsCN CNTEN Set-up Time 3.5 4 4 4 ns thCN CNTEN Hold Time 0 0 1 ns tsRST CNTRST Set-up Time 3.5 4 4 4 ns thRST CNTRST Hold Time 0 0 1 ns toE Output Enable to Data Valid 8 9 12 ns toL OE to Low Z 2 2 2 2 2 ns toL OE		Chip Enable Hold Time	0		0		1		ns	
thW R/W Hold Time 0 0 1 ns tSD Input Data Set-up Time 3.5 4 4 4 ns tHD Input Data Hold Time 0 0 0 1 ns tSAD ADS Set-up Time 3.5 4 4 4 ns tHAD ADS Hold Time 0 0 1 ns tSCN CNTEN Set-up Time 3.5 4 4 4 ns tHCN CNTEN Hold Time 0 0 1 ns tSRST CNTRST Set-up Time 3.5 4 4 4 ns tHRST CNTRST Hold Time 0 0 1 ns tOE Output Enable to Data Valid 8 9 12 ns tOL OE to Low Z 2 2 2 2 ns tOLZ OE to High Z 1 7 1 7 1 7 ns tCDL		R/W Set-up Time	3.5		4		4		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		R/W Hold Time	0		0		1		ns	
thD Input Data Hold Time 0 0 1 ns tsAD ADS Set-up Time 3.5 4 4 4 ns thAD ADS Hold Time 0 0 0 1 ns tsCN CNTEN Set-up Time 3.5 4 4 4 ns thCN CNTRST Hold Time 0 0 1 ns tsRST CNTRST Hold Time 0 0 1 ns toE Output Enable to Data Valid 8 9 12 ns toL OE to Low Z 2 2 2 2 ns toL2 OE to High Z 1 7 1 7 1 7 ns tcD1 Clock to Data Valid - Flow-Through 15 18 25 ns tcD2 Clock to Data Valid - Pipelined 6.5 7.5 12 ns tcD2 Data Output Hold After Clock HIGH 2 2 9 2 9 2 </td <td></td> <td>Input Data Set-up Time</td> <td>3.5</td> <td></td> <td>4</td> <td></td> <td>4</td> <td></td> <td>ns</td>		Input Data Set-up Time	3.5		4		4		ns	
tsadd ADS Set-up Time 3.5 4 4 4 ns thad ADS Hold Time 0 0 1 ns tscn CNTEN Set-up Time 3.5 4 4 4 ns thcn CNTRN Hold Time 0 0 1 ns tsrst CNTRST Set-up Time 3.5 4 4 4 ns thright CNTRST Hold Time 0 0 1 ns toE Output Enable to Data Valid 8 9 12 ns toLZ OE to Low Z 2 2 2 2 ns toHZ OE to High Z 1 7 1 7 ns 1 7 ns 1 7 ns 1 ns 1 1 ns 1 <td></td> <td>Input Data Hold Time</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>1</td> <td></td> <td>ns</td>		Input Data Hold Time	0		0		1		ns	
tHAD ADS Hold Time 0 0 1 ns tSCN CNTEN Set-up Time 3.5 4 4 ns tHCN CNTEN Hold Time 0 0 1 ns tSRST CNTRST Set-up Time 3.5 4 4 4 ns tHRST CNTRST Hold Time 0 0 1 ns tOE Output Enable to Data Valid 8 9 12 ns tOLZ OE to Low Z 2 2 2 2 ns tOHZ OE to High Z 1 7 1 7 1 7 ns tCD1 Clock to Data Valid - Flow-Through 15 18 25 ns tD2 Clock to Data Valid - Pipelined 6.5 7.5 12 ns tDC Data Output Hold After Clock HIGH 2 2 9 2 9 2 9 ns tCKHZ Clock HIGH to Output Low Z 2 9 2		ADS Set-up Time	3.5		4		4		ns	
t _{SCN} CNTEN Set-up Time 3.5 4 4 4 ns t _{HCN} CNTEN Hold Time 0 0 1 ns t _{SRST} CNTRST Set-up Time 3.5 4 4 4 ns t _{HRST} CNTRST Hold Time 0 0 1 ns t _{OE} Output Enable to Data Valid 8 9 12 ns t _{OLZ} OE to Low Z 2 2 2 2 ns t _{OHZ} OE to High Z 1 7 1 7 1 7 ns t _{CD1} Clock to Data Valid - Flow-Through 15 18 25 ns t _{CD2} Clock to Data Valid - Pipelined 6.5 7.5 12 ns t _{DC} Data Output Hold After Clock HIGH 2 2 9 2 9 2 9 ns t _{CKLZ} Clock HIGH to Output Low Z 2 9 2 9 2 9 ns t _{CW}		ADS Hold Time	0		0		1		ns	
thcn CNTEN Hold Time 0 0 1 ns tsrst CNTRST Set-up Time 3.5 4 4 ns thrst CNTRST Hold Time 0 0 1 ns toE Output Enable to Data Valid 8 9 12 ns toLz OE to Low Z 2 2 2 2 ns toHz OE to High Z 1 7 1 7 1 7 ns tcD1 Clock to Data Valid - Flow-Through 15 18 25 ns tcD2 Clock to Data Valid - Pipelined 6.5 7.5 12 ns tDC Data Output Hold After Clock HIGH 2 2 9 2 9 2 9 ns tCKHZ Clock HIGH to Output Low Z 2 9 2 9 ns Port to Port Delays tcwDD Write Port Clock HIGH to Read Data Delay 30 35 40 ns		CNTEN Set-up Time	3.5		4		4		ns	
t _{SRST} CNTRST Set-up Time 3.5 4 4 ns t _{HRST} CNTRST Hold Time 0 0 1 ns t _{OE} Output Enable to Data Valid 8 9 12 ns t _{OLZ} OE to Low Z 2 2 2 2 ns t _{OLZ} OE to High Z 1 7 1 7 1 7 ns t _{CD1} Clock to Data Valid - Flow-Through 15 18 25 ns t _{CD2} Clock to Data Valid - Pipelined 6.5 7.5 12 ns t _{DC} Data Output Hold After Clock HIGH 2 2 9 2 9 2 9 ns t _{CKHZ} Clock HIGH to Output Low Z 2 9 2 9 2 9 ns Port to Port Delays t _{CWDD} Write Port Clock HIGH to Read Data Delay 30 35 40 ns		CNTEN Hold Time	0		0		1		ns	
t _{HRST} CNTRST Hold Time 0 0 1 ns t _{OE} Output Enable to Data Valid 8 9 12 ns t _{OLZ} OE to Low Z 2 2 2 2 ns t _{OHZ} OE to High Z 1 7 1 7 1 7 ns t _{CD1} Clock to Data Valid - Flow-Through 15 18 25 ns t _{CD2} Clock to Data Valid - Pipelined 6.5 7.5 12 ns t _{DC} Data Output Hold After Clock HIGH 2 2 2 2 ns t _{CKHZ} Clock HIGH to Output High Z 2 9 2 9 2 9 ns Port to Port Delays t _{CWDD} Write Port Clock HIGH to Read Data Delay 30 35 40 ns		CNTRST Set-up Time	3.5		4		4		ns	
tOEOutput Enable to Data Valid8912nstOLZOE to Low Z2222nstOHZOE to High Z171717nstCD1Clock to Data Valid - Flow-Through151825nstCD2Clock to Data Valid - Pipelined6.57.512nstDCData Output Hold After Clock HIGH2222nstCKHZClock HIGH to Output High Z292929nsPort to Port DelaystCWDDWrite Port Clock HIGH to Read Data Delay303540ns		CNTRST Hold Time	0		0		1		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Output Enable to Data Valid		8		9		12	ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		OE to Low Z	2		2		2		ns	
t_{CD1}Clock to Data Valid - Flow-Through151825nst_{CD2}Clock to Data Valid - Pipelined6.57.512nst_{DC}Data Output Hold After Clock HIGH222nst_{CKHZ}Clock HIGH to Output High Z292929nst_{CKLZ}Clock HIGH to Output Low Z222ns Port to Port Delays t_{CWDD}Write Port Clock HIGH to Read Data Delay303540ns		OE to High Z	1	7	1	7	1	7	ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Clock to Data Valid - Flow-Through		15		18		25	ns	
tDC Data Output Hold After Clock HIGH 2 2 2 ns tCKHZ Clock HIGH to Output High Z 2 9 2 9 2 9 ns tCKLZ Clock HIGH to Output Low Z 2 2 2 2 ns Port to Port Delays tCWDD Write Port Clock HIGH to Read Data Delay 30 35 40 ns		Clock to Data Valid - Pipelined		6.5		7.5		12	ns	
t _{CKHZ} Clock HIGH to Output High Z 2 9 2 9 2 9 ns t _{CKLZ} Clock HIGH to Output Low Z 2 2 2 2 9 ns Port to Port Delays t _{CWDD} Write Port Clock HIGH to Read Data Delay 30 35 40 ns		Data Output Hold After Clock HIGH	2		2		2		ns	
t _{CKLZ} Clock HIGH to Output Low Z 2 2 2 ns Port to Port Delays t _{CWDD} Write Port Clock HIGH to Read Data Delay 30 35 40 ns		Clock HIGH to Output High Z	2	9	2	9	2	9	ns	
Port to Port Delays t _{CWDD} Write Port Clock HIGH to Read Data Delay 30 35 40 ns		Clock HIGH to Output Low Z	2		2		2		ns	
t _{CWDD} Write Port Clock HIGH to Read Data Delay 30 35 40 ns		ort Delays	1		1					
				30		35		40	ns	
	t _{CCS}	Clock to Clock Set-up Time		9		10		15	ns	

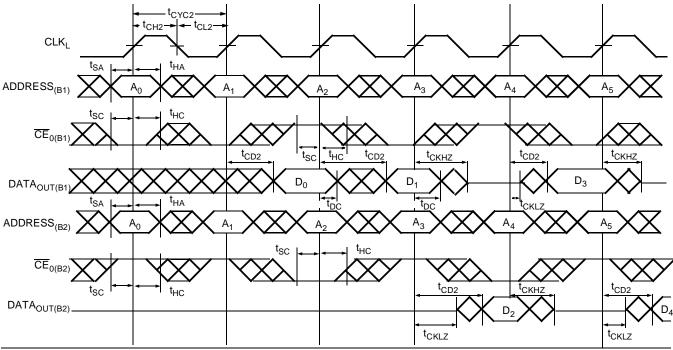


Switching Waveforms

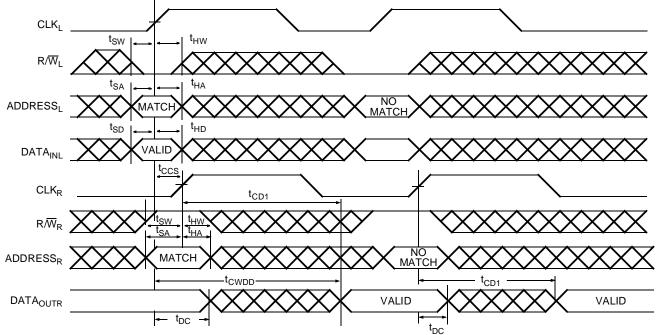
Read Cycle for Flow-Through Output $(\overline{\text{FT}}/\text{PIPE} = \text{V}_{\text{IL}})^{[5,6,7,8]}$

Read Cycle for Pipelined Operation $(\overline{\text{FT}}/\text{PIPE} = V_{\text{IH}})^{[5,6,7,8]}$

- OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.


 ADS = V_{IL}, CNTEN and CNTRST = V_{IH}.

 The output is disabled (high-impedance state) by CE₀=V_{IH} or CE₁ = V_{IL} following the next rising edge of the clock.


 Addresses do not have to be accessed sequentially since ADS = V_{IL} constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

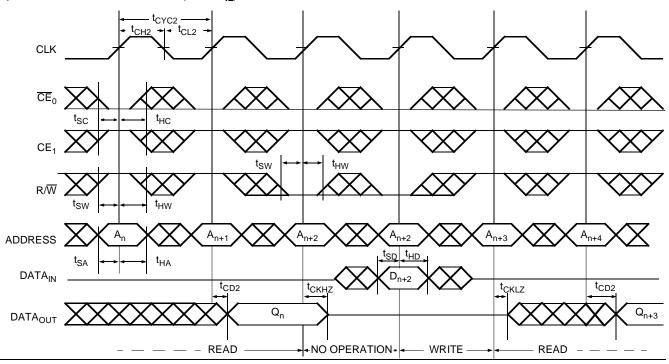
Switching Waveforms (continued) Bank Select Pipelined Read^[9,10]

Left Port Write to Flow-Through Right Port Read^[11,12,13,14]

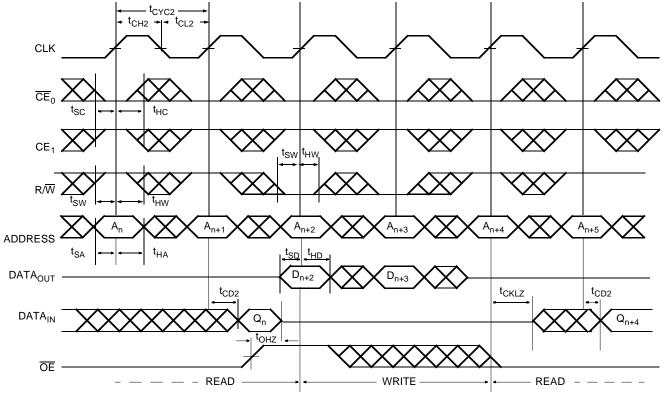
- 9. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2. Each Bank consists of one Cypress dual-port device from this datasheet. ADDRESS_(B1) = ADDRESS_(B2).

 10. OE and ADS = V_{IL}; CE_{1(B1)}, CE_{1(B2)}, RM, CNTEN, and CNTRST = V_{IH}.

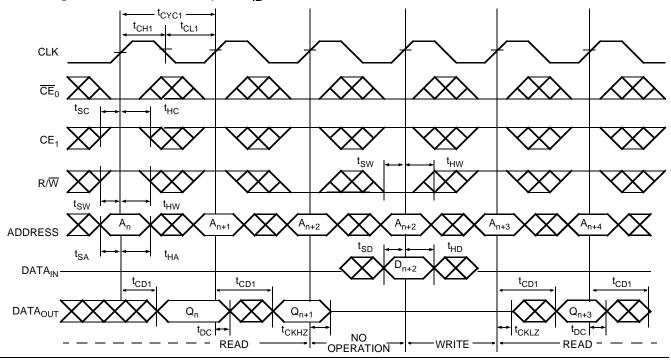
 11. The same waveforms apply for a right port write to flow-through left port read.

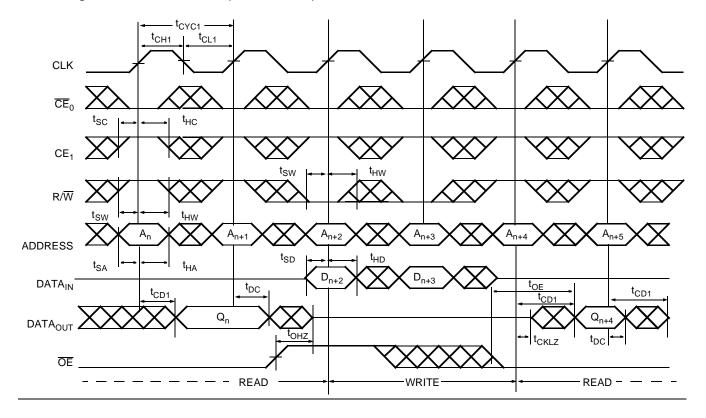

 12. CE₀ and ADS = V_{IL}; CE₁, CNTEN, and CNTRST = V_{IH}.

 13. OE = V_{IL} for the Right Port, which is being read from. OE = V_{IH} for the Left Port, which is being written to.

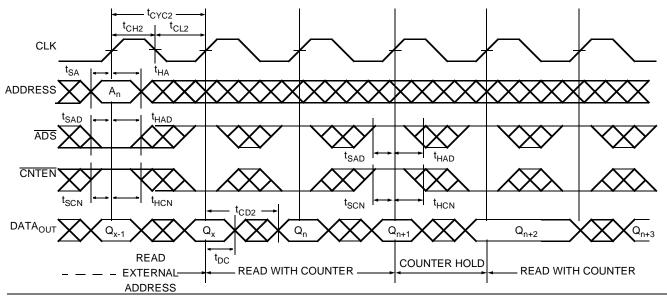

 14. It t_{CCS} ≤ maximum specified, then data from right port READ is not valid until the maximum specified for t_{CWDD}. If t_{CCS}>maximum specified, then data is not valid until tess + test town towns does not apply in this case. until t_{CCS} + t_{CD1} . t_{CWDD} does not apply in this case.

Pipelined Read-to-Write-to-Read ($\overline{\rm OE}$ = V $_{\rm IL}$)[8,12,15,16]

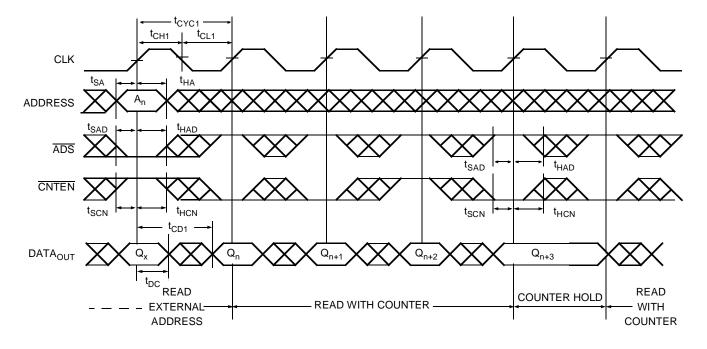

Pipelined Read-to-Write-to-Read ($\overline{\text{OE}}$ Controlled) $^{[8,12,15,16]}$


- 15. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.16. During "No operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

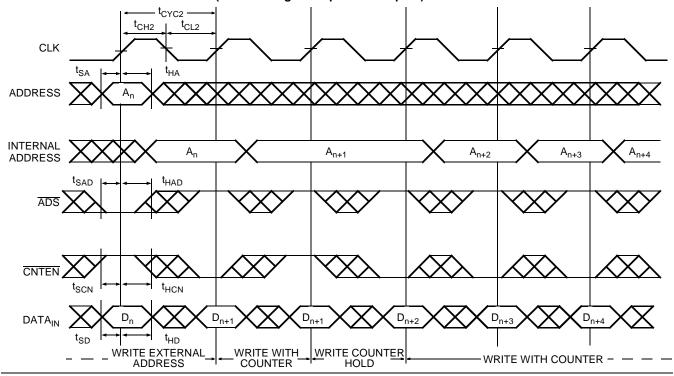
Flow-Through Read-to-Write-to-Read $(\overline{OE} = V_{IL})^{[6,8,12,15]}$



Flow-Through Read-to-Write-to-Read $(\overline{OE}\ Controlled)^{[6,8,12,15]}$

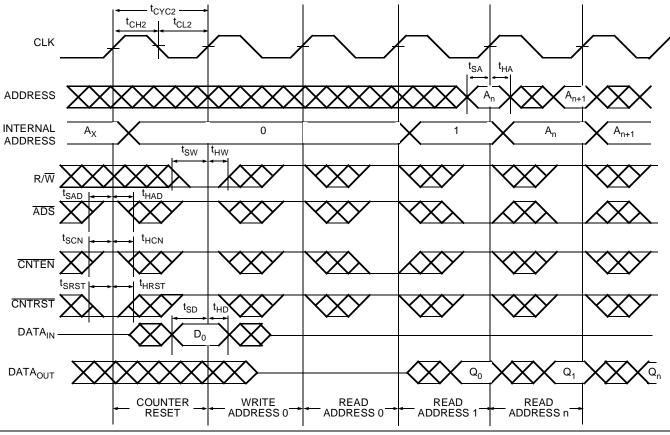


Pipelined Read with Address Counter Advance^[17]


Flow-Through Read with Address Counter Advance^[17]

Note: 17. \overline{CE}_0 and $\overline{OE} = V_{IL}$; CE_1 , R/\overline{W} and $\overline{CNTRST} = V_{IH}$.

Write with Address Counter Advance (Flow-Through or Pipelined Outputs)^[18,19]



Notes: 18. \overline{CE}_0 and $R/\overline{W} = V_{IL}$; CE_1 and $\overline{CNTRST} = V_{IH}$.

19. The "Internal Address" is equal to the "External Address" when $\overline{ADS} = V_{IL}$ and equals the counter output when $\overline{ADS} = V_{IH}$.

Switching Waveforms (continued) Counter Reset (Pipelined Outputs)^[8,15,20,21]

Notes:

20. \$\overline{CE}_0 = V_{|L|}\$; \$CE_1 = V_{|H|}\$.
 21. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.

Read/Write and Enable Operation^[22,23,24]

		Inputs			Outputs	
OE	CLK	CE ₀	CE ₁	R/W	I/O ₀ –I/O ₈	Operation
Х		Η	Х	Х	High-Z	Deselected ^[25]
Х	4	Х	لــ	Х	High-Z	Deselected ^[25]
Х	4	Ш	Η	L	D _{IN}	Write
L		L	Н	Н	D _{OUT}	Read ^[25]
Н	Х	L	Н	Х	High-Z	Outputs Disabled

Address Counter Control Operation [22,26,27,28]

Address	Previous Address	CLK	ADS	CNTEN	CNTRST	I/O	Mode	Operation
Х	Х	7	Х	Х	L	D _{out(0)}	Reset	Counter Reset to Address 0
A _n	Х	7	L	Х	Н	D _{out(n)}	Load	Address Load into Counter
Х	A _n	7	Н	Н	Н	D _{out(n)}	Hold	External Address Blocked—Counter Disabled
Х	A _n	7	Н	L	Н	D _{out(n+1)}	Increment	Counter Enabled—Internal Address Generation

- 22. "X" = Don't Care, "H" = V_{IH}, "L" = V_{IL}.

 23. ADS, CNTEN, CNTRST = Don't Care.

 24. OE is an asynchronous input signal.

 25. When CE changes state in the pipelined mode, deselection and read happen in the following clock cycle.

 26. CE₀ and OE = V_{IL}; C_{E1} and R/W = V_{IH}.

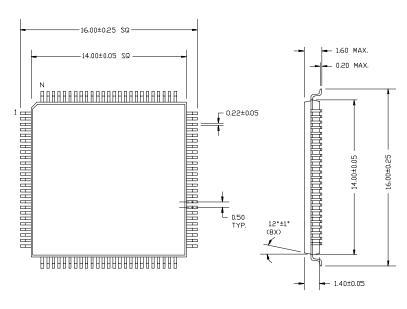
 27. Data shown for Flow-through mode; pipelined mode output will be delayed by one cycle.

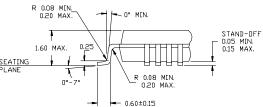
 28. Counter operation is independent of CE₀ and CE₁.

Ordering Information

8K x9 Synchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
6.5	CY7C09159-6AC	A100	100-Pin Thin Quad Flat Pack	Commercial
7.5	CY7C09159-7AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C09159-7AI	A100	100-Pin Thin Quad Flat Pack	Industrial
12	CY7C09159-12AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C09159-12AI	A100	100-Pin Thin Quad Flat Pack	Industrial


16K x9 Synchronous Dual-Port SRAM


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
6.5	CY7C09169-6AC	A100	100-Pin Thin Quad Flat Pack	Commercial
7.5	CY7C09169-7AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C09169-7AI	A100	100-Pin Thin Quad Flat Pack	Industrial
12	CY7C09169-12AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C09169-12AI	A100	100-Pin Thin Quad Flat Pack	Industrial

Document #: 38-00671-B

Package Diagram

100-Pin Thin Quad Flat Pack A100

[©] Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.