

Design Example Report

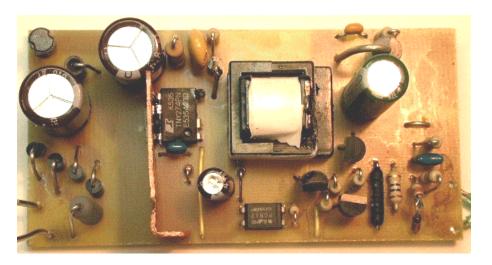
Title	5 W, 5 V Charger using TNY274P		
Specification Input: 85 – 264 VAC Output: 5 V / 1 A			
Application	Portable Audio / MP3 Player		
Author	Power Integrations Applications Department		
Document Number	DER-113		
Date	July 19, 2006		
Revision	1.1		

Summary and Features

- CVCC adapter
- High Efficiency
- Meets CEC efficiency and no-load specs
- <100 mW No Load Consumption
- Low conducted EMI without Y cap
- CC mode has good temperature compensation

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

ı abie	Of Contents	
1 Int	roduction	3
2 Po	ower Supply Specification	
	hematic	
4 Cir	rcuit Description	6
4.1	Primary clamp snubber	6
4.2	Bias supply	6
4.3	CVCC circuit	6
5 PC	CB Layout	7
6 Bil	I Of Materials	8
7 Tra	ansformer Specification	9
7.1	Electrical Diagram	9
7.2	Electrical Specifications	9
7.3	Materials	9
7.4	Transformer Build Diagram	10
7.5	Transformer Construction	10
8 Tra	ansformer Spreadsheets	11
9 Pe	erformance Data	14
9.1	Efficiency	
9.1	1.1 Active Mode CEC Measurement Data	15
9.2	No-load Input Power	
9.3	Regulation	
	3.1 Output Characteristic	
	Thermal Performance	
11	Waveforms	
11.1	Drain Voltage and Current, Normal Operation	
11.2	1 5 1	
11.3	J I	
11.4	· · · · · · · · · · · · · · · · · · ·	
11.5		
	.5.1 Ripple Measurement Technique	
	.5.2 Measurement Results	
	Conducted EMI	
13	Revision History	24


Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

Introduction

This document is an engineering report describing a design for a 5 V / 1 A adapter. The power supply utilizes a TNY274 as the switching controller.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 1 – Populated Circuit Board Photograph.

Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V_{IN}	85		265	VAC	2 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power (230 VAC)				0.3	W	
Output						
Output Voltage (CV)	V_{OUT}	4.75	5	5.25	V	± 5%
Output Voltage (CC)	V_{OUT}		1		V	CC prior to auto-restart
Output Ripple Voltage	V_{RIPPLE}			100	mV	20 MHz bandwidth
Output Current	I _{OUT}	0		1	Α	CV Operation Mode
Total Output Power						
Continuous Output Power	P _{out}			5	W	
Efficiency						
Full Load	η	68	70		%	Measured at P _{OUT} 25 °C
Required average efficiency at 25, 50, 75 and 100 % of P _{OUT}	η _{CEC}	63.5			%	Per California Energy Commission (CEC) / Energy Star requirements
						(CEC) / Energy Star requirements
Environmental						
Conducted EMI		Mee	ts CISPR2	2B / EN55	5022B	
Safety		Desigr	ed to mee Cla	t IEC950, iss II	UL1950	
Surge		1.5			kV	1.2/50 μs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω
Ambient Temperature	T _{AMB}	0		50	°C	Free convection, sea level

3 Schematic

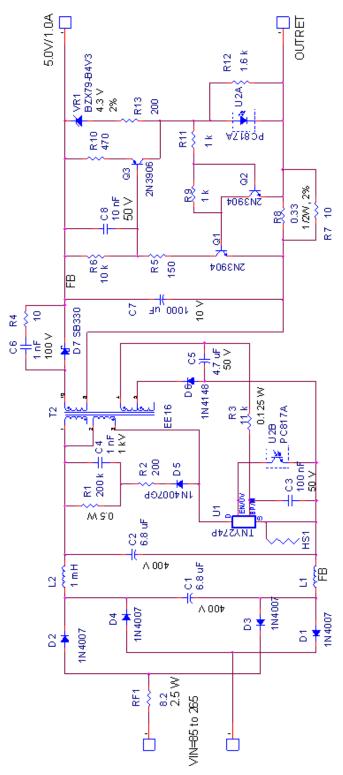


Figure 2 - Schematic.

4 Circuit Description

4.1 Primary clamp snubber

D5 is a normal recovery, glass passivated 1N4007G for good EMI and higher efficiency. If the glass passivated version of the 1N4007 is not available then the FR107 is recommended. Standard plastic 1N4007 types are not recommended due to excessive drain ringing.

4.2 Bias supply

D6, C5 and R3 provide a small bias current to the TNY274 to reduce no-load consumption and reduce its temperature.

4.3 CVCC circuit

Transistors Q1-Q3, and associated resistors form the constant current regulation circuit. Resistor R8 and R7 form the current sense resistor. In CC mode the voltage drop on it is regulated to 0.35 V. This CC circuit has built in temperature compensation.

VR1 regulates the output in CV mode.

5 PCB Layout

Page 7 of 25

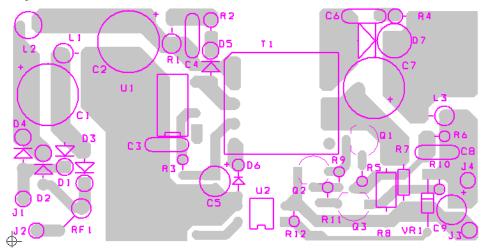


Figure 3 – Printed Circuit Layout.

6 Bill Of Materials

Item	Qty	Part Reference	Value	Description
1	2	C1 C2	6.8 uF	6.8 uF, 400 V, Electrolytic, (10 x 16),
2	1	C3	100 nF	100 nF, 50 V, Ceramic, Z5U
3	1	C4	1 nF	1 nF, 1 kV, Disc Ceramic
4	1	C5	4.7 uF	4.7 uF, 50 V, Electrolytic, Gen. Purpose, (5 x 11)
5	1	C6	1 nF	1 nF, 100 V, Ceramic, X7R
6	1	C7	1000 uF	1000 uF, 10 V, Electrolytic, Very Low ESR, 41 mOhm, (8 x 20)
7	1	C8	10 nF	10 nF, 50 V, Ceramic, Z5U
8	4	D1 D2 D3 D4	1N4007	1000 V, 1 A, Rectifier, DO-41
9	1	D5	1N4007GP	1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41
10	1	D6	1N4148	75 V, 300 mA, Fast Switching, DO-35
11	1	D7	SB330	30 V, 3 A, Schottky, DO-201AD
12	1	HS1	HS	HEATSINK Custom
13	1	L1	Ferrite Bead	3.5 mm x 7.6 mm, 75 Ohms at 25 MHz, 22 AWG hole, Ferrite Bead
14	1	L2	1 mH	1 mH, 0.15 A, Ferrite Core
15	2	Q1 Q2	2N3904	NPN, Small Signal BJT, 40 V, 0.2 A, TO-92
16	1	Q3	2N3906	PNP, Small Signal BJT, 40 V, 0.2 A, TO-92
17	1	R1	200 k	200 k, 5%, 1/2 W, Carbon Film
18	1	R2	200	200 R, 5%, 1/4 W, Carbon Film
19	1	R3	11 k	11 k, 5%, 1/8 W, Carbon Film
20	1	R4	10	10 R, 5%, 1/4 W, Carbon Film
21	1	R5	150	150 R, 5%, 1/8 W, Carbon Film
22	1	R6	10 k	10 k, 5%, 1/8 W, Carbon Film
23	1	R7	10	10 R, 5%, 1/8 W, Carbon Film
24	1	R8	0.33	0.33 R, 1%, 1/2 W
25	2	R9 R11	1 k	1 k, 5%, 1/8 W, Carbon Film
26	1	R10	470	470 R, 5%, 1/8 W, Carbon Film
27	1	R12	1.6 k	1.6 k, 5%, 1/8 W, Carbon Film
28	1	R13	200	200 R, 5%, 1/8 W, Carbon Film
29	1	RF1	8.2	8.2 R, 2.5 W, Fusible/Flame Proof Wire Wound
30	1	T1	EE16	Bobbin, EE16, Horizontal, 10 pins
31	1	U1	TNY274P	TinySwitch-III, TNY274P, DIP-8C
32	1	U2	PC817A	Opto coupler, 35 V, CTR 80-160%, 4-DIP
33	1	VR1	BZX79-B4V3	4.3 V, 500 mW, 2%, DO-35

Transformer Specification

7.1 Electrical Diagram

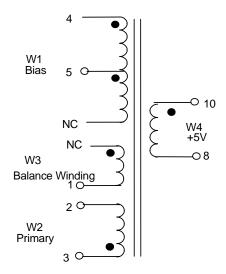


Figure 4 – Transformer Electrical Diagram.

Figure 5 – Copper Foil preparation for winding 3.

Electrical Specifications 7.2

Electrical Strength	60 second, 60 Hz, from Pins 1-5 to Pins 6-10 3000 VAC			
Primary Inductance	Pins 2-3, all other windings open, measured at 132 kHz.	2519μH, -0/+12%		
Resonant Frequency	ant Frequency Pins 2-3, all other windings open			
Primary Leakage Inductance	Pins 2-3, with Pins 8-10 shorted, measured at 132 kHz.	65μH (Max.)		

7.3 Materials

Item	Description	
[1]	Core: EE16 Gapped for 174 nH/T^2	
[2]	Bobbin: EE16 Horizontal 10 Pins	
[3]	Magnet Wire: 34 AWG	
[4]	Triple Insulated Wire: 26 AWG	
[5]	Copper Foil 0.06 mm tick, 7.6mm wide	
[6]	Tape, 8.6 mm Wide	
[7]	Tape, 12 mm Wide	
[8]	Varnish	

7.4 Transformer Build Diagram

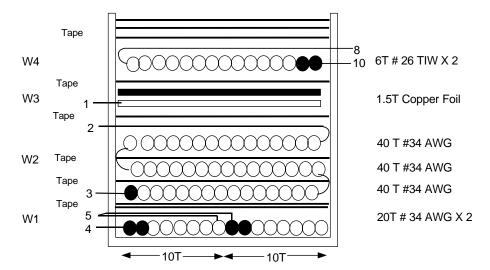


Figure 6 – Transformer Build Diagram.

7.5 Transformer Construction

Bobbin Preparation	Place the bobbin [2] on the winding machine with the primary pin side
Bobbiii Freparation	oriented to the left hand side.
	Start at Pin 4. Wind 10 bifilar turns of item [3] from left to right. Take the
W1 Bigs Winding .	lead out of the winding area and terminate it at pin 5. Bring the lead back
W1 Bias Winding + Core Cancellation	to the winding area and continue winding on the same layer. Wind 10
Core Caricellation	more turns. The whole layer must be uniformly and tightly wound. Cut the
	finishing lead just at the end of the winding.
Basic Insulation	Use two layers of item [6] for basic insulation.
	Start at Pin 3. Wind 40 turns of item [3] from left to right in 1 layer. Use
	one layers of item [6] for basic insulation. Continue winding on a second
W2 Primary	layer. Wind 40 turns from right to left. Use one layers of item [6] for basic
	insulation. Wind 40 more from left to right on a third layer. Terminate on
	pin 2. The three layers should be uniformly and tightly wound.
Basic Insulation	Use one layers of item [6] for basic insulation.
	Prepare winding as shown in figure 5 using items [5] and [7]. Very
W3, Balance	important. For this winding reverse the winding direction of
Winding	the machine. Start at pin 1, Wind 1.5 turns of copper foil. Finish lead is
	left unconnected.
Basic Insulation	Use one layer of item [6] for basic insulation.
W4 Secondary	Start at Pins 10. Wind 6 bifilar turns of item [4] Spread turns evenly
Winding	across bobbin. Finish on Pin 8.
Outer Wrap	Wrap windings with 3 layers of tape item [6].
Final Assembly	Assemble and secure core halves. Varnish impregnate using item [8].

8 Transformer Spreadsheets

ACDC_TinySwitch- III_031006; Rev.1.11; Copyright Power Integrations 2006	INPUT	INFO	OUTPUT UNI	ACDC_TinySwitch-III_031006_Rev1-11.xls; TinySwitch-III Continuous/Discontinuous Flyback 「Transformer Design Spreadsheet
ENTER APPLICATION	VARIABLE	S		Customer
VACMIN	85		Volt	Minimum AC Input Voltage
VACMAX	265		Volt	Maximum AC Input Voltage
fL	50		Her	z AC Mains Frequency
vo	5.33		Volt	Output Voltage (at continuous power) Power Supply Output Current (corresponding to peak
IO	1.00		Amp	s power)
Power			5.33 Wat	s Continuous Output Power Efficiency Estimate at output terminals. Under 0.7
n	0.68			if no better data available Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data
Z	0.81			available
			mSe	~
tC	3.00		ond: uFa	Bridge Rectifier Conduction Time Estimate
CIN	13.60		13.6 ds	a Input Capacitance

	ENTER TinySwitch-III VARIABLES							
-	TinySwitch-III	Auto	TNY274	Recommended TinySwitch-III				
	Chosen Device		TNY274					
(Chose Configuration	STD	Standard Current Limit	Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)				
ı	ILIMITMIN		0.233 Amps	Minimum Current Limit				
ı	ILIMITTYP		0.250 Amps					
ı	ILIMITMAX		0.267 Amps	Maximum Current Limit				
1	fSmin		124000 Hertz	Minimum Device Switching Frequency				
	l^2fmin		A^2k 7.425 Hz	I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR < 135 V				
,	VOR	117.00	117 Volts	Recommended)				
,	VDS		10 Volts	TinySwitch-III on-state Drain to Source Voltage				
,	VD	0.50	0.5 Volts	Output Winding Diode Forward Voltage Drop				
ı	KP		0.65	Ripple to Peak Current Ratio (KP < 6) Transient Ripple to Peak Current Ratio. Ensure				
Į	KP_TRANSIENT		0.40	KP_TRANSIENT > 0.25				

ENTER BIAS WINDING VARIABLES						
VB	22.00 Vol	s Bias Winding Voltage				
VDB	0.70 Vol	s				
NB	22.64	Bias Winding Number of Turns				
VZOV	28.00 Vol	s Over Voltage Protection zener diode voltage.				

UVLO VARIABLES	
V_UV_TARGET	Target DC under-voltage threshold, above which 87.87 Volts the power supply with start Typical DC start-up voltage based on standard value
V_UV_ACTUAL	84.70 Volts of RUV_ACTUAL
RUV_IDEAL	3.43 Mohms Calculated value for UV Lockout resistor
RUV_ACTUAL	3.30 Mohms Closest standard value of resistor to RUV_IDEAL

ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES						
Core Type	EE16	EE16		Enter Transformer Core		
Core		EE16 EE16 B	P/N:	PC40EE16-Z		
Bobbin		OBBIN	P/N:	EE16_BOBBIN		
AE			0.192 cm^2	Core Effective Cross Sectional Area		
LE			3.5 cm	Core Effective Path Length		
AL			1140 nH/T^2	2 Ungapped Core Effective Inductance		
BW			8.6 mm	Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary		
M			0 mm	Creepage Distance)		
L			3	Number of Primary Layers		
NS	6		6	Number of Secondary Turns		

DC INPUT VOLTAGE PARAMETERS					
VMIN		80 Volts	Minimum DC Input Voltage		
VMAX		375 Volts	Maximum DC Input Voltage		

CURRENT WAVEFORM SHAPE PARAMETERS				
DMAX	0.63	Duty Ratio at full load, minimum primary inductance and minimum input voltage		
IAVG	0.11 Amps	Average Primary Current		
IP	0.23 Amps	Minimum Peak Primary Current		
IR	0.15 Amps	Primary Ripple Current		
IRMS	0.15 Amps	Primary RMS Current		

TRANSFORMER PRIMARY DESIGN PARAMETERS				
LP		2519 uHenries	Typical Primary Inductance. +/- 12% to ensure a minimum primary inductance of 2249 uH	
LP_TOLERANCE		12%	Primary inductance tolerance	
NP		120	Primary Winding Number of Turns	
ALG		174 nH/T^2	Gapped Core Effective Inductance	
ВМ		2909 Gauss	Maximum Operating Flux Density, BM<3000 is recommended	
BAC		952 Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)	
ur		1654	Relative Permeability of Ungapped Core	
LG		0.12 mm	Gap Length (Lg > 0.1 mm)	
BWE		25.8 mm	Effective Bobbin Width	
OD	0.21 mm	Maximum Primary Wire Diameter including insulation		
INS		0.04 mm	Estimated Total Insulation Thickness (= 2 * film thickness)	
DIA		0.17 mm	Bare conductor diameter	
AWG		34 AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)	
СМ		40 Cmils	Bare conductor effective area in circular mils	
CMA		273 Cmils/Amp	Primary Winding Current Capacity (200 < CMA < 500)	

TRANSFORMER SECOND Lumped parameters	PARY DESIGN PARAMETE	RS
ISP	4.68 Amps	Peak Secondary Current
ISRMS	2.29 Amps	Secondary RMS Current
IRIPPLE	2.06 Amps	Output Capacitor RMS Ripple Current
CMS	458 Cmils	Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard
AWGS	23 AWG	AWG value)

VOLTAGE STRESS PARAMETERS					
VDRAIN	640 Volts	Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)			
PIVS	24 Volts	Output Rectifier Maximum Peak Inverse Voltage			

Performance Data 9

All measurements performed at room temperature, 60 Hz input frequency. Efficiency measurements were done at the end of the cable on the load side.

Efficiency 9.1

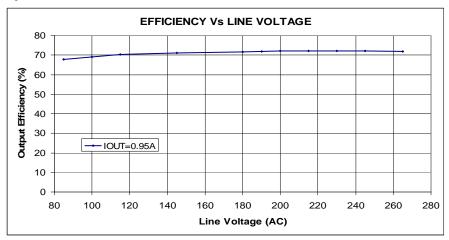


Figure 7 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.

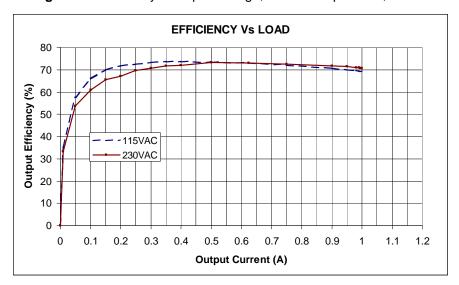


Figure 8 - Efficiency Vs Load.

9.1.1 Active Mode CEC Measurement Data

All single output adapters, including those provided with products, for sale in California after Jan 1st, 2007 must meet the California Energy Commission (CEC) requirement for minimum active mode efficiency and no load input power. Minimum active mode efficiency is defined as the average efficiency of 25, 50, 75 and 100% of rated output power with the limit based on the nameplate output power:

Nameplate Output (P _o)	Minimum Efficiency in Active Mode of Operation	
< 1 W	$0.49 \times P_{O}$	
≥ 1 W to ≤ 49 W	$0.09 \times \ln (P_0) + 0.49$ [ln = natural log]	
> 49 W	0.84 W	

For adapters that are single input voltage only then the measurement is made at the rated single nominal input voltage (115 VAC or 230 VAC), for universal input adapters the measurement is made at both nominal input voltages (115 VAC and 230 VAC).

To meet the standard the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the CEC/Energy Star standard.

Percent of	Efficiency (%)		
Full Load	115 VAC	230 VAC	
25	72.63	69.55	
50	73.31	73.25	
75	72.08	72.5	
100	69.25	70.80	
Average	71.82	71.52	
CEC specified minimum average efficiency (%)	63.48		

More states within the USA and other countries are adopting this standard, for the latest up to date information please visit the PI Green Room:

http://www.powerint.com/greenroom/regulations.htm

9.2 No-load Input Power

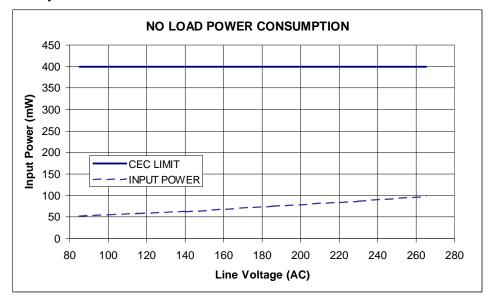


Figure 9 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz. Note: CEC limit is actually 500 mW, not 400 mW as shown in figure above.

9.3 Regulation

9.3.1 Output Characteristic.

Measurements were done at the end of the cable on the load side.

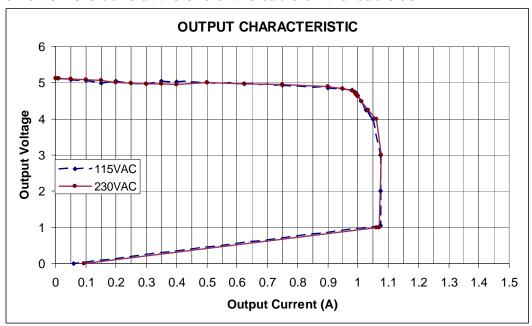


Figure 10 – Output Characteristic.

10 Thermal Performance

When doing this test, the unit was put inside of a cardboard box. The box was put inside a thermal chamber. No free air was flowing around the unit.

Item	Temperature (°C)		
Item	85 VAC	265 VAC	
Ambient	50	50	
TinySwitch (U1)	93	83	
Transformer (T1)	81	84	
Output Rectifier (D7)	88	90	
Output Capacitor (C7)	77	78	

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

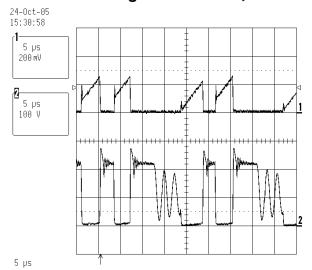


Figure 11 - 85 VAC, Full Load. Upper: I_{DRAIN} , 0.2 A / div Lower: V_{DRAIN} , 100 V, 2 μs / div

Figure 12 - 265 VAC, Full Load Upper: I_{DRAIN} , 0.2 A / div Lower: V_{DRAIN} , 200 V / 2 μs /div

11.2 Output Voltage Start-up Profile

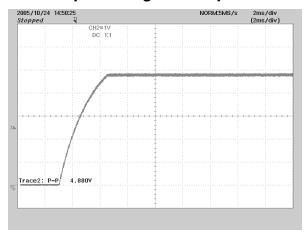


Figure 13 – Start-up Profile, 115VAC 1 V, 2 ms / div.

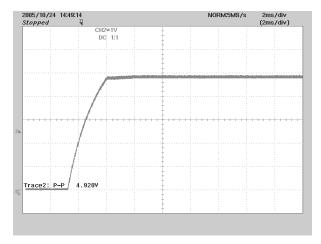


Figure 14 – Start-up Profile, 230 VAC 1 V, 2 ms / div.

11.3 Drain Voltage and Current Start-up Profile

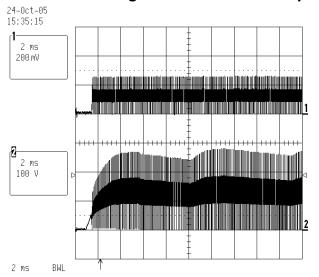


Figure 15 – 85 VAC Input and Maximum Load. Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 100 V & 2 ms / div.

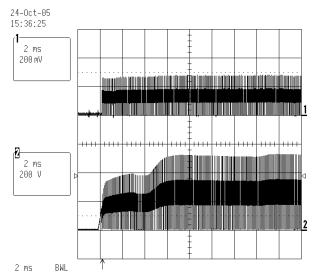
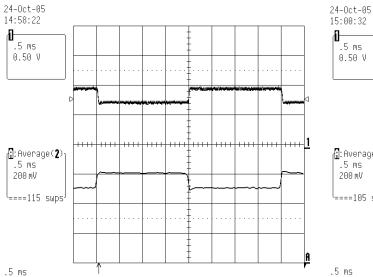



Figure 16 – 265 VAC Input and Maximum Load. Upper: I_{DRAIN}, 0.2 A / div. Lower: V_{DRAIN}, 200 V & 2 ms / div.

11.4 Load Transient Response (75% to 100% Load Step)

In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.

13.00.32 1.5 ms 0.50 V 1.5 ms 200 mV ====105 swps

Figure 17 – Transient Response, 115 VAC, 75-100-75% Load Step.
Top: Load Current, 0.5 A/div.

Bottom: Output Voltage 200 mV, 0.5 ms / div.

Figure 18 – Transient Response, 230 VAC, 75-100-75% Load Step Upper: Load Current, 0.5 A/ div.

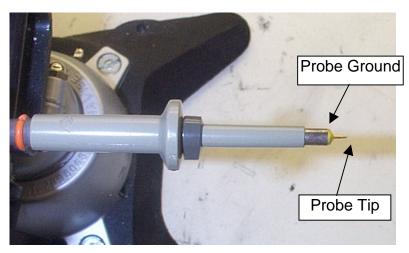
Bottom: Output Voltage 200 mV, 0.5 ms / div.

11.5 Output Ripple Measurements

11.5.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figures 19 and 20.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).



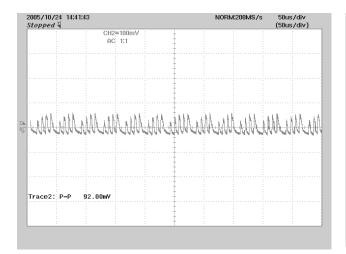

Figure 19 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 20 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)

11.5.2 Measurement Results

Ripple measurements were done at the end of the cable on the load side.

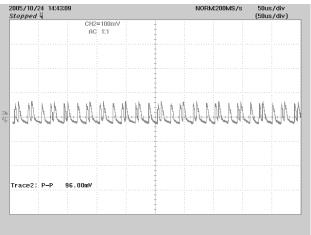


Figure 21 – Ripple, 85 VAC, Full Load. 50 uS, 100 mV / div

Figure 22 – 5 V Ripple, 115 VAC, Full Load. 50 uS, 100 mV / div

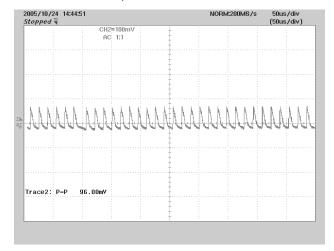


Figure 23 – Ripple, 230 VAC, Full Load. 50 uS, 100 mV / div

12 Conducted EMI

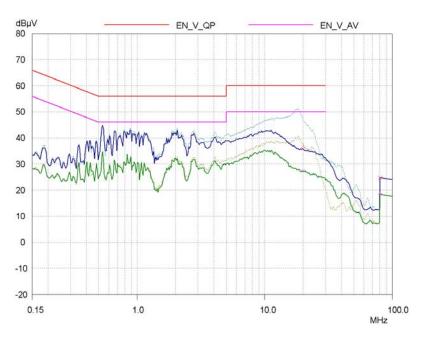
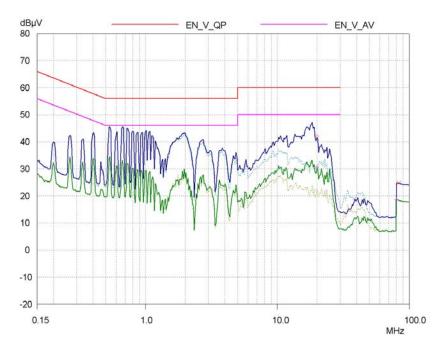



Figure 24 – Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Bolt Traces With OUTRETURN connected to ARTHAND, Light traces With OUTRETURN connected to GND

Figure 25 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Bolt traces with OUTRETURN CONNECTED TO GND. Light Traces with OUTRET Connected to ARTHAND

13 Revision History

Date November 20, 2005 July 19, 2006	Author VC PV	Revision 1.0 1.1	Description & changes Initial release Edits and corrections	Reviewed JC / VC KM

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. @Copyright 2006 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200

Customer Service: +1-408-414-9665 Phone:

+1-408-414-9765 Fax: e-mail: usasales@powerint.com

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany

Phone:

+49-89-5527-3910 Fax: +49-89-5527-3920 e-mail: eurosales@powerint.com

CHINA (SHANGHAI) INDIA

Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 +86 - 21 - 6215 - 5548Phone:

+86-21-6215-2468 Fax: e-mail:_chinasales@powerint.com

CHINA (SHENZHEN)

Room 2206-2207, Block A, Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong,

China, 518031 +86-755-8379-3243 Phone: +86-755-8379-5828 Fax:

e-mail: chinasales@powerint.com

261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India 560080

+91-80-5113-8020 Phone: Fax: +91-80-5113-8023

e-mail: indiasales@powerint.com

ITALY

Via Vittorio Veneto 12 20091 Bresso MI

Italy

Phone: +39-028-928-6000 Fax: +39-028-928-6009

e-mail: eurosales@powerint.com

JAPAN

Keihin Tatemono 1st Bldg 2-12-20

Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa ken,

Japan 222-0033

+81-45-471-1021 Phone: +81-45-471-3717 Fax:

e-mail:

japansales@powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6

Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea +82-2-2016-6610 Phone:

Fax: +82-2-2016-6630

koreasales@powerint.com

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900

Phone: +65-6358-2160 Fax: +65-6358-2015

e-mail:

singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist.

Taipei, Taiwan 114, R.O.C. +886 - 2 - 2659 - 4570Phone:

+886-2-2659-4550 Fax:

e-mail:

taiwansales@powerint.com

EUROPE HO

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom

+44 (0) 1252-730-140 Phone: Fax: +44 (0) 1252-727-689 e-mail: eurosales@powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX

World Wide +1-408-414-9760