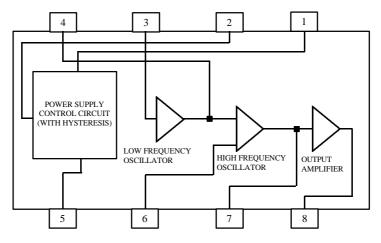
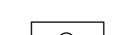
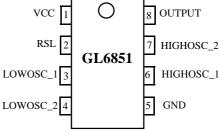
GL6851 TWO TONE RINGER


Description


The GL6851 tone ringer is a monolithic device, which incorporates two oscillators, an output amplifier and a power supply control circuit. The oscillator frequencies can be adjusted over a wide range by selection of external components. One oscillator, normally operated at a low frequency, causes the second oscillator to alternate between its nominal frequency, and a related higher frequency. The resulting output is a distinct warbling tone. The output amplifier will drive either a transformer coupled loudspeaker or a piezo-ceramic transducer. The device can be powered from a telephone line or a fixed d.c. supply. The GL6851 has provision for adjustment of the supply initiation current.

Features


- Low current consumption.
- Designed for telephone bell replacement.
- Small size MINIDIP package.
- Adjustable 2- frequency tone.
- Built-in hysteresis prevents false triggering and rotary dial CHIRPS.
- Alarms or other alerting devices.
- Adjustable for reduced supply initiation current
- Include ESD protection.

Block Diagram

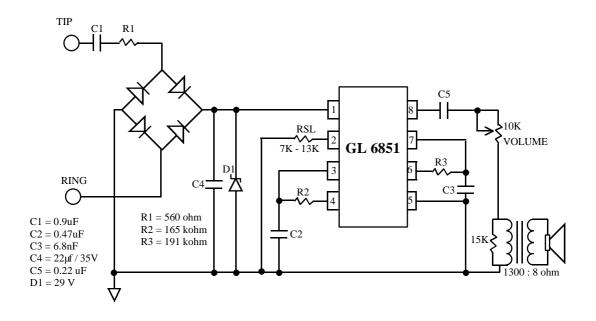
Pin Configuration

Absolute Maximum Ratings (Ta = 25; É

CHARACTERISTICS	SYMBOL	VALUE	UNIT
Supply Voltage	V _{CC}	30	V
Power Dissipation	Ро	400	mW
Operating Temperature	Topr	-25 to 65	; É
Storage Temperature	Tstg	-65 to 150	É
	-		

Electrical Characteristics (Ta = 25; É

CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Operating Supply Voltage	V _{CC}		-	-	29.0	V
Initiation Supply Voltage ¹	V _{SI}		17	19	21	V
Initiation Supply Current ¹	I _{SI}		0.9	2.0	3.7	mA
Sustaining Voltage ²	V _{SUS}		9.7	11.0	12.0	V
Sustaining Current ²	I _{SUS}		0.4	1.0	2.0	mA
Output Voltage High	V _{OH}	V _{CC} =21V, I ₈ =-10mA Pin6=6V,Pin7=GND	17	19	21	v
Output Voltage Low	V _{OL}	V _{CC} =21V, I ₈ = 10mA Pin6=GND,Pin7=6V	-	-	2	v
	$f_{\rm H1}$					
High Frequency 1 High Frequency 2 Low Frequency	${ m f}_{ m H2}$ ${ m f}_{ m L}$	R3=191K,C3=6800pF R3=191K,C3=6800pF R2=165K,C2=0.47µF	461 576 9.0	512 640 10	563 704 11.0	Hz Hz Hz


NOTE *

- Initial supply voltage (V_{SI}) is the supply voltage required to start the tone ringer oscillation.
 Sustaining voltage (V_{SUS}) in the supply voltage required to maintain oscillation.

PIN DESCRIPTION

PIN NUMBER	PIN FUNCTION	DESCRIPTION	
PIN 1	VCC	Operating supply D.C. voltage rectified	
		from ringing signal.	
PIN2	RSL	Initiation current programming Pin.	
		(Must be connected)	
PIN3	LOWOSC_1	Low Frequency Time Constant Adjustment pins	
PIN 4	LOWOSC_2	f_L is controlled externally by R_2 and C_2	
		$f_L = 1/1.289R_2C_2$	
PIN 5	GND	Ground	
PIN 6	HIGHOSC_1	High Frequency Time Constant Adjustment Pins	
PIN 7	HIGHOSC_2	f_{H1} and f_{H2} are controlled externally by R_3 and C_3 .	
		$f_{H1}=1/1.504R_3C_3, f_{H2}=1/1.203R_3C_3$	
PIN 8	OUTPUT	Tone output	

APPLICATON CIRCUIT

