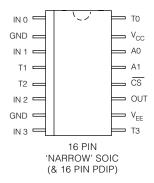

GX4404 Wideband, Monolithic 4x1 Video Multiplexer

DATA SHEET


FEATURES

- · low differential phase and gain
- wide bandwidth, 200 MHz at -3 dB
- · small switching transient
- ±4.5 to ±5.5 volts supplies
- individual TALLY outputs

FUNCTIONAL BLOCK DIAGRAM

PIN CONNECTIONS

AVAILABLE PACKAGING

16 pin PDIP 16 pin SOIC Tape 16 pin (N) SOIC

CIRCUIT DESCRIPTION

The GX4404 is a wideband video multiplexer implemented in bipolar technology. This device is characterized by excellent differential phase and gain in the enabled state, very high off-isolation in the disabled state. Fully buffered unilateral signal paths ensure negligible output to input feedback, while delivering minimal output switching transients through make-before-break switching.

For use in NxM routing matrices, these devices feature a very high, nearly constant input impedance coupled with high output impedance in the disabled state. This allows multiple devices to be paralleled at the inputs and outputs without additional circuitry.

The chip is disabled when a logic HIGH is applied to the CS control pin. In this case, regardless of the ADDRESS data, the output of the device assumes a high impedance state. Individual PNP to $V_{\rm CC}$ TALLY outputs provide positive indication of crosspoint selection.

All logic inputs are TTL and 5V CMOS compatible. Supply voltages can be between ± 4.5 to ± 5.5 volts.

APPLICATIONS

- HDTV
- · Very high quality video switching
- · Very high density video switching
- Computer graphics
- PCM / data routing matrices

TRUTH TABLE

				TALLY O/Ps			
cs	A 1	A0	OUT	T0	T1	T2	Т3
0	0	0	IN 0	ON	*	*	*
0	0	1	IN 1	*	ON	*	*
0	1	0	IN 2	*	*	ON	*
0	1	1	IN 3	*	*	*	ON
1	X	Х	HI - Z	*	*	*	*

X = DON'T CARE *= OFF (high impedance)

ORDERING INFORMATION

Part Number	Package Type	Temperature Range			
GX4404-CDC	16 pin PDIP	0 to 70 ^o C			
GX4404-CKD	16 pin (N) SOIC	0 to 70 ⁰ C			
GX4404-CTD	Tape16 pin (N) SOIC	0 to 70 ⁰ C			

Document No. 520 - 43 - 1

ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE
Supply Voltage	±7.5V
Operating Temperature Range	$0^{\circ}\text{C} \le \text{T}_{A} \le 70^{\circ}\text{ C}$
Storage Temperature Range	-65°C ≤ T _S ≤ 150° C
Lead Temperature (Soldering, 10 Sec)	260° C

PARAMETER	VALUE
Analog Input Voltage Logic Input Voltage TALLY Output Current	$(V_{EE} -1.4) < V_A < (V_{CC} +0.3)V$ $-0.5V \le V_L \le +5.5V$ 2 mA

ELECTRICAL CHARACTERISTICS $(V_S = \pm 5V DC, 0^{\circ}C \le T_A \le 70^{\circ}C, R_L = 10k\Omega, C_L = 30 pF, unless otherwise shown.)$

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
	Supply Voltage	±V _S	Operating Range		±4.5	-	±5.5	V
DC		I ⁺	<u>CS</u> = 0	-	30	37	mA	
SUPPLY	Supply Current	I-	CS = 0	-	30	37	mA	
		I ⁺	<u>CS</u> = 1		-	220	300	μА
		I-	<u>CS</u> = 1		-	220	380	μА
	Analog Output Voltage Swing	V _{OUT}	Extremes before clipping occurs		-2.4	-	2.6	V
STATIC	Analog Input Bias Current	I _{BIAS}			-	12	-	μА
	Output Offset Voltage	V _{OS}	T _A = 25°C		-13	-4	7	mV
	Output Offset Voltage Drift	ΔV_{OS}			-	35	80	μV/°C
	Chip Enable Time	t _{on}	Enable input to appearance of signal		-	200	400	ns
LOGIC	Chip Disable Time	t _{OFF}	Enable input to disappearance of signal at output.		0.6	1.2	-	μs
	Logic Input Thresholds	V _{IH}	1		2.0	-	-	V
		$V_{\rm IL}$	0		-	-	0.8	V
	Logic Input Current	\mathbf{I}_{L}			-	-	4	μΑ
	TALLY Outputs		(V _{CC} -V _{TALLY}) I _{TALLY} = 1mA		70	150	300	mV
	Insertion Loss	I.L.	1V p-p sine or sq. wave at 100 kHz		0.030	0.040	0.055	dB
	Bandwidth (-3dB)	B.W.	small signal C _L = 0 pF		-	300	-	MHz
DYNAMIC	Input Resistance	R_{iN}	CS = 0, crosspoint on		0.5	-	-	МΩ
DINAMIC	Input Capacitance	C _{IN}	CS = 0, crosspoi	nt on	-	1.5	-	pF
	Output Resistance	R _{OUT}	CS = 0, crosspoi	nt on	-	4	-	Ω
	Output Capacitance	C _{OUT}	CS = 1, chip disabled		-	3.7	-	pF
	Differential Gain	dg	$f = 3.58 \text{ MHz}, V_{IN} = 40 \text{ IRE}$		-	-	0.05	%
	Differential Phase	dp	$f = 3.58 \text{ MHz}, V_{IN} = 40 \text{ IRE}$		-	-	0.04	deg
	All Hostile Crosstalk	XTLK _{AH}	1Vp-p on 3 inputs 4 th input has 10Ω resistor to gnd f =30 MHz		-	70	-	dB
	Chip Disabled Crosstalk	XTLK _{CD}	Enabled device on O/P f=100 MHz		-	80	-	dB
	Slew Rate	+SR	V _{IN} = 3V p-p (C _L = 0 pF)		250	-	-	V/µs
		-SR	V _{IN} = 3V p-p (C _L = 0 pF)		250	-	-	V/µs
	Gain Spread at 30 MHz	ΔA _V			-	-	±0.05	dB
	Crosspoint Scatter		$R_S = 75\Omega$	T _A = 25°C		-	±0.15	deg
			f = 3.58 MHz	0°C < T _A < 70°C	-	-	±0.25	deg

520 - 43 - 1

TYPICAL PERFORMANCE CURVES

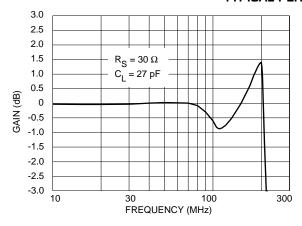


Fig. 1 Flattened Frequency Response

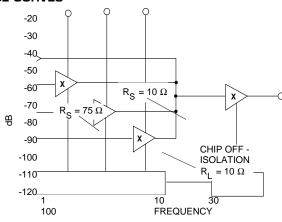


Fig. 2 All Hostile Crosstalk & Isolation

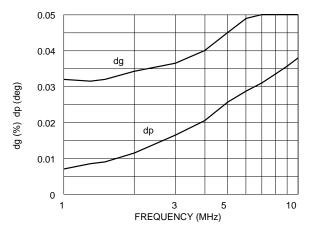


Fig. 3 Differential Gain & Phase

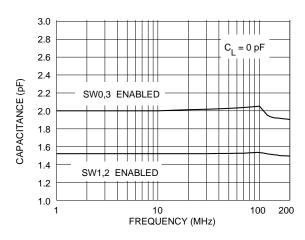
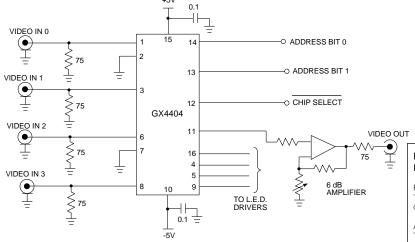



Fig. 4 Input Capacitance

390

(REPEAT FOR EACH TALLY OUTPUT)

All resistors in ohms, all capacitors in μF unless otherwise stated

DOCUMENT IDENTIFICATION

PRODUCT PROPOSAL

This data has been compiled for market investigation purposes only, and does not constitute an offer for sale.

L.E.D. DRIVER

ADVANCE INFORMATION NOTE

This product is in development phase and specifications are subject to change without notice. Gennum reserves the right to remove the product at any time. Listing the product does not constitute an offer for sale.

PRELIMINARY DATA SHEET

The product is in a preproduction phase and specifications are subject to change without notice.

DATA SHEET

The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible.

CAUTION

ELECTROSTATIC
SENSITIVE DEVICES
DO NOT OPEN PACKAGES OR HANDLE
EXCEPT AT A STATIC-FREE WORKSTATION

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

© Copyright July 1991 Gennum Corporation. Revision Date: January 1993. All rights reserved. Printed in Canada.

3 520 - 43 - 1