L6229

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR

1 FEATURES

- OPERATING SUPPLY VOLTAGE FROM 8 TO 52V
- 2.8A OUTPUT PEAK CURRENT (1.4A DC)

■ RDS(ON) 0.73Ω TYP. VALUE @ $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
■ OPERATING FREQUENCY UP TO 100 KHz
■ NON DISSIPATIVE OVERCURRENT DETECTION AND PROTECTION

- DIAGNOSTIC OUTPUT
- CONSTANT toff PWM CURRENT CONTROLLER
- SLOW DECAY SYNCHR. RECTIFICATION
- 60° \& 120° HALL EFFECT DECODING LOGIC
- BRAKE FUNCTION
- TACHO OUTPUT FOR SPEED LOOP
- CROSS CONDUCTION PROTECTION
- THERMAL SHUTDOWN

■ UNDERVOLTAGE LOCKOUT
■ INTEGRATED FAST FREEWEELING DIODES

2 DESCRIPTION

The L6229 is a DMOS Fully Integrated Three-Phase Motor Driver with Overcurrent Protection.
Realized in MultiPower-BCD technology, the device combines isolated DMOS Power Transistors with CMOS and bipolar circuits on the same chip.
The device includes all the circuitry needed to drive a three-phase BLDC motor including: a three-phase DMOS Bridge, a constant off time PWM Current Controller and the decoding logic for single ended hall sensors that generates the required sequence for the power stage.
Available in PowerDIP24 (20+2+2), PowerSO36 and SO24 (20+2+2) packages, the L6229 features a non-

Figure 1. Package

Table 1. Order Codes

Part Number	Package
L6229N	PowerDIP24
L6229PD	PowerSO36
L6229PDTR	PowerSO36 in Tape \& Reel
L6229D	SO24
L6229DTR	SO24 in Tape \& Reel

dissipative overcurrent protection on the high side Power MOSFETs and thermal shutdown.

Figure 2. Block Diagram

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Test conditions	Value	Unit
V_{S}	Supply Voltage	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\text {SB }}=\mathrm{V}_{\mathrm{S}}$	60	V
$\mathrm{V}_{\text {OD }}$	Differential Voltage between: $\mathrm{VS}_{\mathrm{A}}, \mathrm{OUT}_{1}, \mathrm{OUT}_{2}$, SENSE $_{\mathrm{A}}$ and $\mathrm{VS}_{\mathrm{B}}, \mathrm{OUT}_{3}$, SENSE $_{\mathrm{B}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {SENSEA }}=\mathrm{V}_{\text {SENSEB }}=\mathrm{GND} \end{aligned}$	60	V
$\mathrm{V}_{\text {BOOT }}$	Bootstrap Peak Voltage	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$	$\mathrm{V}_{\mathrm{S}}+10$	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {EN }}$	Logic Inputs Voltage Range		-0.3 to 7	V
$\mathrm{V}_{\text {REF }}$	Voltage Range at pin VREF		-0.3 to 7	V
$\mathrm{V}_{\text {RCOFF }}$	Voltage Range at pin RCOFF		-0.3 to 7	V
VRCPULSE	Voltage Range at pin RCPULSE		-0.3 to 7	V
$\mathrm{V}_{\text {SENSE }}$	Voltage Range at pins SENSE $_{A}$ and SENSE ${ }_{B}$		-1 to 4	V
IS(peak)	Pulsed Supply Current (for each VS_{A} and VS_{B} pin)	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}} ; \mathrm{T}_{\text {PULSE }}<1 \mathrm{~ms}$	3.55	A
Is	DC Supply Current (for each $V S_{A}$ and VS_{B} pin)	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$	1.4	A
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\text {OP }}$	Storage and Operating Temperature Range		-40 to 150	${ }^{\circ} \mathrm{C}$

Table 3. Recommended Operating Condition

Symbol	Parameter	Test Conditions	MIN	MAX	Unit
V_{s}	Supply Voltage	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\text {SB }}=\mathrm{V}_{\mathrm{S}}$	12	52	V
$V_{O D}$	Differential Voltage between: $\mathrm{VS}_{\mathrm{A}}, \mathrm{OUT}_{1}, \mathrm{OUT}_{2}$, SENSE $_{\mathrm{A}}$ and $\mathrm{VS}_{\mathrm{B}}, \mathrm{OUT}_{3}$, SENSE $_{\mathrm{B}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}} \\ & \mathrm{~V}_{\mathrm{SENSEA}}=\mathrm{V}_{\text {SENSEB }} \end{aligned}$		52	V
$\mathrm{V}_{\text {REF }}$	Voltage Range at pin VREF		-0.1	5	V
$\mathrm{V}_{\text {SENSE }}$	Voltage Range at pins SENSEA $_{A}$ and SENSE ${ }_{B}$	$\begin{aligned} & \hline \begin{array}{l} \text { (pulsed } \left.t_{w}<t_{r r}\right) \\ \text { (DC) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-6 \\ & -1 \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
lout	DC Output Current	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$		1.4	A
TJ	Operating Junction Temperature		-25	125	${ }^{\circ} \mathrm{C}$
$\mathrm{f}_{\text {S }}$	Switching Frequency			100	KHz

Table 4. Thermal Data

Symbol	Description	PDIP24	SO24	PowerSO36	Unit
$\mathrm{R}_{\text {th(-pins) }}$	Maximum Thermal Resistance Junction-Pins	19	15		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(}}(\mathrm{c}$-ase)	Maximum Thermal Resistance Junction-Case			2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(}}^{\text {(-amb) }}$ 1	MaximumThermal Resistance Junction-Ambient ${ }^{(1)}$	44	55	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(}}^{\text {(-amb) }}$ 1	Maximum Thermal Resistance Junction-Ambient ${ }^{(2)}$	-	-	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(}}^{\text {(-amb) }}$ 1	MaximumThermal Resistance Junction-Ambient ${ }^{(3)}$	-	-	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(}}^{\text {(-amb)2 }}$	Maximum Thermal Resistance Junction-Ambient ${ }^{(4)}$	59	78	63	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the bottom side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$).
(2) Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the top side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$).
(3) Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the top side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$), 16 via holes and a ground layer.
(4) Mounted on a multi-layer FR4 PCB without any heat-sinking surface on the board.

Figure 3. Pin Connections (Top view)

(5) The slug is internally connected to pins 1, 18, 19 and 36 (GND pins).

Table 5. Pin Description

PACKAGE		Name	Type	Function
SO24/ PowerDIP24	PowerSO36			
PIN \#	PIN \#			
1	10	H_{1}	Sensor Input	Single Ended Hall Effect Sensor Input 1.
2	11	DIAG	Open Drain Output	Overcurrent Detection and Thermal Protection pin. An internal open drain transistor pulls to GND when an overcurrent on one of the High Side MOSFETs is detected or during Thermal Protection.
3	12	SENSEA	Power Supply	Half Bridge 1 and Half Bridge 2 Source Pin. This pin must be connected together with pin SENSE $_{B}$ to Power Ground through a sensing power resistor.
4	13	RCOFF	RC Pin	RC Network Pin. A parallel RC network connected between this pin and ground sets the Current Controller OFF-Time.
5	15	OUT_{1}	Power Output	Output 1
$\begin{gathered} 6,7, \\ 18,19 \end{gathered}$	$\begin{aligned} & \hline 1,18 \\ & 19,36 \end{aligned}$	GND	GND	Ground terminals. On PowerDIP24 and SO24 packages, these pins are also used for heat dissipation toward the PCB. On PowerSO36 package the slug is connected on these pins.
8	22	TACHO	Open Drain Output	Frequency-to-Voltage open drain output. Every pulse from pin H_{1} is shaped as a fixed and adjustable length pulse.
9	24	RCPULSE	RC Pin	RC Network Pin. A parallel RC network connected between this pin and ground sets the duration of the Monostable Pulse used for the Frequency-to-Voltage converter.

Table 5. Pin Description (continued)

PACKAGE		Name	Type	
SO24/ PowerDIP24	PowerSO36			

Table 6. Electrical Characteristics
($\mathrm{V}_{\mathrm{S}}=48 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {Sth(ON) }}$	Turn ON threshold		5.8	6.3	6.8	V
$\mathrm{~V}_{\text {Sth(OFF) }}$	Turn OFF threshold		5	5.5	6	V
I_{S}	Quiescent Supply Current	All Bridges OFF; $\mathrm{Tj}=-25$ to $125^{\circ} \mathrm{C}^{(6)}$		5	10	mA
$\mathrm{~T}_{\mathrm{J}(\text { OFF) }}$	Thermal Shutdown Temperature			165		${ }^{\circ} \mathrm{C}$

Output DMOS Transistors

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$High-Side + Low-Side Switch ON Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.47	1.69	Ω	
		$\mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}{ }^{(7)}$		2.35	2.70	Ω
IDSS	Leakage Current	$\mathrm{EN}=$ Low; OUT = VCC			2	mA
		$\mathrm{EN}=$ Low; OUT = GND	-0.3			mA

Table 6. Electrical Characteristics (continued)
($\mathrm{V}_{\mathrm{S}}=48 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |

Source Drain Diodes					
$V_{S D}$	Forward ON Voltage	$I_{S D}=1.4 \mathrm{~A}$, EN $=$ LOW		1.15	1.3
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{f}}=1.4 \mathrm{~A}$	V		
t_{fr}	Forward Recovery Time		300		ns

Logic Input (H1, H2, H3, EN, FWD/REV, BRAKE)

V_{IL}	Low level logic input voltage		-0.3		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	High level logic input voltage		2		7	V
I_{IL}	Low level logic input current	GND Logic Input Voltage	-10			$\mu \mathrm{~A}$
I_{IH}	High level logic input current	7 V Logic Input Voltage			10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {th(ON) }}$	Turn-ON Input Threshold			1.8	2.0	V
$\mathrm{~V}_{\text {th(OFF) }}$	Turn-OFF Input Threshold		0.8	1.3		V
$\mathrm{~V}_{\text {thHYS }}$	Input Thresholds Hysteresys		0.25	0.5		V

Switching Characteristics

$t_{\text {D(on)EN }}$	Enable to out turn-ON delay time ${ }^{(7)}$	Load $=1.4 \mathrm{~A}$, Resistive Load	500	650	800	ns
$t_{\text {(off)EN }}$	Enable to out turn-OFF delay time ${ }^{(7)}$	LIOAD $=1.4 \mathrm{~A}$, Resistive Load	500		1000	ns
$\mathrm{t}_{\mathrm{D} \text { (on) }} \mathrm{N}$	Other Logic Inputs to Output TurnON delay Time	ILOAD $=1.4 \mathrm{~A}$, Resistive Load		1.6		$\mu \mathrm{s}$
$t_{D(\text { (ff) })} \mathrm{N}$	Other Logic Inputs to out Turn-OFF delay Time	LLOAD $=1.4 \mathrm{~A}$, Resistive Load		800		ns
$t_{\text {RISE }}$	Output Rise Time ${ }^{(7)}$	LIOAD $=1.4 \mathrm{~A}$, Resistive Load	40		250	ns
$\mathrm{t}_{\text {FALL }}$	Output Fall Time ${ }^{(7)}$	LIOAD $=1.4 \mathrm{~A}$, Resistive Load	40		250	ns
$t_{\text {DT }}$	Dead Time		0.5	1		$\mu \mathrm{s}$
f_{CP}	Charge Pump Frequency	$\mathrm{Tj}=-25$ to $125^{\circ} \mathrm{C}{ }^{(6)}$		0.6	1	MHz

PWM Comparator and Monostable

IRCOFF	Source current at pin RCOFF	$\mathrm{V}_{\text {RCOFF }}=2.5 \mathrm{~V}$	3.5	5.5		mA
V OFFSET	Offset Voltage on Sense Comparator	$\mathrm{V}_{\text {ref }}=0.5 \mathrm{~V}$		± 5		mV
tprop	Turn OFF Propagation delay ${ }^{(8)}$	$\mathrm{V}_{\text {ref }}=0.5 \mathrm{~V}$		500		ns
$t_{\text {blank }}$	Internal Blanking Time on Sense Comparator			1		$\mu \mathrm{s}$
ton(min)	Minimum on Time			2.5	3	$\mu \mathrm{s}$
toff	PWM RecirculationTime	Roff $=20 \mathrm{k} \Omega$; Coff $=1 \mathrm{nF}$		13		$\mu \mathrm{s}$
		R ${ }_{\text {OFF }}=100 \mathrm{k} \Omega$; $\mathrm{C}_{\text {OFF }}=1 \mathrm{nF}$		61		$\mu \mathrm{s}$
IBIAS	Input Bias Current at pin VREF				10	$\mu \mathrm{A}$

Tacho Monostable

$I_{\text {RCPULSE }}$	Source Current at pin RCPULSE	$\mathrm{V}_{\text {RCPULSE }}=2.5 \mathrm{~V}$	3.5	5.5		mA

Table 6. Electrical Characteristics (continued)
($\mathrm{V}_{\mathrm{S}}=48 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
tPULSE	Monostable of Time	$R_{\text {PUL }}=20 \mathrm{k} \Omega ; \mathrm{C}_{\text {PUL }}=1 \mathrm{nF}$		12		$\mu \mathrm{~s}$
		$R_{\text {PUL }}=100 \mathrm{k} \Omega ; \mathrm{C}_{\text {PUL }}=1 \mathrm{nF}$		60		$\mu \mathrm{~s}$
R TACHO	Open Drain ON Resistance			40	60	Ω

Over Current Detection \& Protection

Isover	Supply Overcurrent Protection Threshold	$\mathrm{T}_{\mathrm{J}}=-25$ to $125^{\circ} \mathrm{C}{ }^{(6)}$	2	2.8	3.55	A
Ropdr	Open Drain ON Resistance	$\mathrm{IDIAG}=4 \mathrm{~mA}$		40	60	Ω
Іон	OCD high level leakage current	$\mathrm{V}_{\text {DIAG }}=5 \mathrm{~V}$		1		$\mu \mathrm{A}$
tocd(on)	OCD Turn-ON Delay Time ${ }^{(9)}$	IDIAG $=4 \mathrm{~mA} ; \mathrm{C}_{\text {DIAG }}<100 \mathrm{pF}$		200		ns
tocd(0fF)	OCD Turn-OFF Delay Time ${ }^{(9)}$	$\mathrm{IDIAG}=4 \mathrm{~mA} ; \mathrm{C}_{\text {DIAG }}<100 \mathrm{pF}$		100		ns

(6) Tested at $25^{\circ} \mathrm{C}$ in a restricted range and guaranteed by characterization.
(7) See Fig. 4.
(8) Measured applying a voltage of 1 V to pin SENSE and a voltage drop from 2 V to OV to pin VREF.
(9) See Fig. 5.

Figure 4. Switching Characteristic Definition

Figure 5. Overcurrent Detection Timing Definition

3 CIRCUIT DESCRIPTION

3.1 POWER STAGES and CHARGE PUMP

The L6229 integrates a Three-Phase Bridge, which consists of 6 Power MOSFETs connected as shown on the Block Diagram. Each Power MOS has an $R_{D S}(\mathrm{ON})=0.73 \Omega$ (typical value @ $25^{\circ} \mathrm{C}$) with intrinsic fast freewheeling diode. Switching patterns are generated by the PWM Current Controller and the Hall Effect Sensor Decoding Logic (see relative paragraphs). Cross conduction protection is implemented by using a dead time ($\mathrm{t}_{\mathrm{DT}}=1 \mu \mathrm{~s}$ typical value) set by internal timing circuit between the turn off and turn on of two Power MOSFETs in one leg of a bridge.
Pins VS_{A} and VS_{B} MUST be connected together to the supply voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$.
Using N -Channel Power MOS for the upper transistors in the bridge requires a gate drive voltage above the power supply voltage. The Bootstrapped Supply ($\mathrm{V}_{\mathrm{BOOT}}$) is obtained through an internal oscillator and few external components to realize a charge pump circuit as shown in Figure 6. The oscillator output (pin VCP) is a square wave at 600 KHz (typically) with 10 V amplitude. Recommended values/part numbers for the charge pump circuit are shown in Table 7.

Table 7. Charge Pump External Component Values.

$C_{\text {воот }}$	220 nF
C_{P}	10 nF
R_{P}	100Ω
D_{1}	1 N 4148
D_{2}	1 N 4148

Figure 6. Charge Pump Circuit

3.2 LOGIC INPUTS

Pins FWD/REV, BRAKE, EN, $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} are TTL/CMOS and $\mu \mathrm{C}$ compatible logic inputs. The internal structure is shown in Figure 4. Typical value for turn-ON and turn-OFF thresholds are respectively $\mathrm{V}_{\mathrm{th}(\mathrm{ON})}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{th}(\mathrm{OFF})}=1.3 \mathrm{~V}$.
Pin EN (enable) may be used to implement Overcurrent and Thermal protection by connecting it to the open collector DIAG output If the protection and an external disable function are both desired, the appropriate connection must be implemented. When the external signal is from an open collector output, the circuit in Figure 8 can be used. For external circuits that are push pull outputs the circuit in Figure 9 could be used. The resistor $R_{\text {EN }}$ should be chosen in the range from $2.2 \mathrm{~K} \Omega$ to $180 \mathrm{~K} \Omega$. Recommended values for R_{EN} and C_{EN} are respectively $100 \mathrm{~K} \Omega$ and 5.6 nF . More information for selecting the values can be found in the Overcurrent Protection section.

Figure 7. Logic Input Internal Structure

Figure 8. Pin EN Open Collector Driving

Figure 9. Pin EN Push-Pull Driving

3.3 PWM CURRENT CONTROL

The L6229 includes a constant off time PWM Current Controller. The current control circuit senses the bridge current by sensing the voltage drop across an external sense resistor connected between the source of the three lower power MOS transistors and ground, as shown in Figure 10. As the current in the motor increases the voltage across the sense resistor increases proportionally. When the voltage drop across the sense resistor becomes greater than the voltage at the reference input pin VREF the sense comparator triggers the monostable switching the bridge off. The power MOS remain off for the time set by the monostable and the motor current recirculates around the upper half of the bridge in Slow Decay Mode as described in the next section. When the monostable times out, the bridge will again turn on. Since the internal dead time, used to prevent cross conduction in the bridge, delays the turn on of the power MOS, the effective Off Time toff is the sum of the monostable time plus the dead time.

Figure 11 shows the typical operating waveforms of the output current, the voltage drop across the sensing resistor, the pin RC voltage and the status of the bridge. More details regarding the Synchronous Rectification and the output stage configuration are included in the next section.
Immediately after the Power MOS turn on, a high peak current flows through the sense resistor due to the re-
verse recovery of the freewheeling diodes. The L6229 provides a $1 \mu \mathrm{~s}$ Blanking Time tBLANK that inhibits the comparator output so that the current spike cannot prematurely retrigger the monostable.

Figure 10. PWM Current Controller Simplified Schematic

Figure 11. Output Current Regulation Waveforms

Figure 12 shows the magnitude of the Off Time toff versus Coff and Roff values. It can be approximately calculated from the equations:

```
\(t_{\text {RCFALL }}=0.6 \cdot\) Roff \(\cdot\) Coff
\(t_{\text {OFF }}=t_{\text {RCFALL }}+t_{\text {DT }}=0.6 \cdot R_{\text {OFF }} \cdot C_{\text {OFF }}+t_{D T}\)
```

where $R_{\text {OFF }}$ and Coff are the external component values and $t_{D T}$ is the internally generated Dead Time with: $20 \mathrm{~K} \Omega \leq \mathrm{R}_{\text {OFF }} \leq 100 \mathrm{~K} \Omega$ $0.47 \mathrm{nF} \leq \mathrm{C}_{\text {OFF }} \leq 100 \mathrm{nF}$ $t_{D T}=1 \mu \mathrm{~s}$ (typical value)
Therefore:

$$
\begin{aligned}
& \operatorname{tOFF}(\mathrm{MIN})=6.6 \mu \mathrm{~s} \\
& \operatorname{toFF}(\mathrm{MAX})=6 \mathrm{~ms}
\end{aligned}
$$

These values allow a sufficient range of toff to implement the drive circuit for most motors.
The capacitor value chosen for Coff also affects the Rise Time trCRISE of the voltage at the pin RCOFF. The Rise Time trcrise will only be an issue if the capacitor is not completely charged before the next time the monostable is triggered. Therefore, the On Time ton, which depends by motors and supply parameters, has to be bigger than trCRISE for allowing a good current regulation by the PWM stage. Furthermore, the On Time ton can not be smaller than the minimum on time $\mathrm{t}_{\mathrm{N}(\mathrm{MIN}) \text {. }}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
t_{\mathrm{ON}}>\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}=2.5 \mu \mathrm{~s} \text { (typ. value) } \\
\mathrm{t}_{\mathrm{ON}}>\mathrm{t}_{\mathrm{RCRISE}}-\mathrm{t}_{\mathrm{DT}}
\end{array}\right. \\
& \mathrm{t}_{\mathrm{RCRISE}}=600 \cdot \text { CoFF }
\end{aligned}
$$

Figure 13 shows the lower limit for the On Time ton for having a good PWM current regulation capacity. It has to be said that ton is always bigger than ton(MIN) because the device imposes this condition, but it can be smaller than $t_{\text {RCRISE }}-t_{\text {DT. }}$. In this last case the device continues to work but the Off Time toff is not more constant.
So, small Coff value gives more flexibility for the applications (allows smaller On Time and, therefore, higher switching frequency), but, the smaller is the value for Coff, the more influential will be the noises on the circuit performance.

Figure 12. toff versus Coff and Roff.

Figure 13. Area where ton can vary maintaining the PWM regulation.

3.4 SLOW DECAY MODE

Figure 14 shows the operation of the bridge in the Slow Decay mode during the Off Time. At any time only two legs of the three-phase bridge are active, therefore only the two active legs of the bridge are shown in the figure and the third leg will be off. At the start of the Off Time, the lower power MOS is switched off and the current recirculates around the upper half of the bridge. Since the voltage across the coil is low, the current decays slowly. After the Dead Time the upper power MOS is operated in the synchronous rectification mode reducing the impendence of the freewheeling diode and the related conducting losses. When the monostable times out, upper MOS that was operating the synchronous mode turns off and the lower power MOS is turned on again after some delay set by the Dead Time to prevent cross conduction.

Figure 14. Slow Decay Mode Output Stage Configurations

3.5 DECODING LOGIC

The Decoding Logic section is a combinatory logic that provides the appropriate driving of the three-phase bridge outputs according to the signals coming from the three Hall Sensors that detect rotor position in a 3phase BLDC motor. This novel combinatory logic discriminates between the actual sensor positions for sensors spaced at 60, 120, 240 and 300 electrical degrees. This decoding method allows the implementation of a universal IC without dedicating pins to select the sensor configuration.
There are eight possible input combinations for three sensor inputs. Six combinations are valid for rotor positions with 120 electrical degrees sensor phasing (see Figure 15, positions 1, 2, 3a, 4, 5 and 6a) and six combinations are valid for rotor positions with 60 electrical degrees phasing (see Figure 17, positions 1, 2, 3b, 4, 5 and 6 b). Four of them are in common ($1,2,4$ and 5) whereas there are two combinations used only in 120 electrical degrees sensor phasing (3 a and 6 a) and two combinations used only in 60 electrical degrees sensor phasing (3b and 6b).
The decoder can drive motors with different sensor configuration simply by following the Table 8. For any input configuration $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{3}\right)$ there is one output configuration $\left(\mathrm{OUT}_{1}, \mathrm{OUT}_{2}\right.$ and $\left.\mathrm{OUT}_{3}\right)$. The output configuration 3 a is the same than 3 b and analogously output configuration 6 a is the same than 6 b .
The sequence of the Hall codes for 300 electrical degrees phasing is the reverse of 60 and the sequence of the Hall codes for 240 phasing is the reverse of 120 . So, by decoding the 60 and the 120 codes it is possible to drive the motor with all the four conventions by changing the direction set.

Table 8. 60 and 120 Electrical Degree Decoding Logic in Forward Direction.

Hall 120°	1	2	3 a	-	4	5	6 a	-
Hall 60°	1	2	-	3 b	4	5	-	6 b
H_{1}	H	H	L	H	L	L	H	L
H_{2}	L	H	H	H	H	L	L	L
H_{3}	L	L	L	H	H	H	H	L
OUT_{1}	Vs	High Z	GND	GND	GND	High Z	Vs	Vs
OUT $_{2}$	High Z	Vs	Vs	Vs	High Z	GND	GND	GND
OUT $_{3}$	GND	GND	High Z	High Z	Vs	Vs	High Z	High Z
Phasing $^{1->3}$	$2->3$	$2->1$	$2->1$	$3->1$	$3->2$	$1->2$	$1->2$	

Figure 15. $12 \mathbf{0}^{\circ}$ Hall Sensor Sequence.

Figure 16. 60° Hall Sensor Sequence.

3.6 TACHO

A tachometer function consists of a monostable, with constant off time (tpulse), whose input is one Hall Effect signal $\left(\mathrm{H}_{1}\right)$. It allows developing an easy speed control loop by using an external op amp, as shown in Figure 18. For component values refer to Application Information section.

The monostable output drives an open drain output pin (TACHO). At each rising edge of the Hall Effect Sensors H_{1}, the monostable is triggered and the MOSFET connected to pin TACHO is turned off for a constant time tpulse (see Figure 17). The off time tpulse can be set using the external RC network (RPUL, Cpul) connected to the pin RCPULSE. Figure 19 gives the relation between tpulse and $\mathrm{C}_{\text {PUL }}$, RPUL. We have approximately:

$$
\text { tpulse }=0.6 \cdot \mathrm{R}_{\text {PUL }} \cdot \mathrm{C}_{\text {PUL }}
$$

where $C_{\text {PUL }}$ should be chosen in the range $1 \mathrm{nF} \ldots 100 \mathrm{nF}$ and RPUL in the range $20 \mathrm{~K} \Omega \ldots 100 \mathrm{~K} \Omega$.
By connecting the tachometer pin to an external pull-up resistor, the output signal average value V_{M} is proportional to the frequency of the Hall Effect signal and, therefore, to the motor speed. This realizes a simple Fre-quency-to-Voltage Converter. An op amp, configured as an integrator, filters the signal and compares it with a reference voltage $V_{\text {REF }}$, which sets the speed of the motor.

$$
\mathrm{V}_{\mathrm{M}}=\frac{\mathrm{t}_{\text {PULSE }}}{\mathrm{T}} \cdot \mathrm{~V}_{\mathrm{DD}}
$$

Figure 17. Tacho Operation Waveforms.

Figure 18. Tachometer Speed Control Loop.

Figure 19. tpulse versus $C_{\text {pul }}$ and RPuL.

3.7 NON-DISSIPATIVE OVERCURRENT DETECTION and PROTECTION

The L6229 integrates an Overcurrent Detection Circuit (OCD) for full protection. This circuit provides Output-toOutput and Output-to-Ground short circuit protection as well. With this internal over current detection, the external current sense resistor normally used and its associated power dissipation are eliminated. Figure 20 shows a simplified schematic for the overcurrent detection circuit.
To implement the over current detection, a sensing element that delivers a small but precise fraction of the output current is implemented with each High Side power MOS. Since this current is a small fraction of the output current there is very little additional power dissipation. This current is compared with an internal reference current $I_{\text {REF }}$. When the output current reaches the detection threshold (typically $I_{\text {SOVER }}=2.8 \mathrm{~A}$) the OCD comparator signals a fault condition. When a fault condition is detected, an internal open drain MOS with a pull down capability of 4 mA connected to pin DIAG is turned on.

The pin DIAG can be used to signal the fault condition to a $\mu \mathrm{C}$ or to shut down the Three-Phase Bridge simply by connecting it to pin EN and adding an external R-C (see REN, C_{EN}).

Figure 20. Overcurrent Protection Simplified Schematic

Figure 21 shows the Overcurrent Detetection operation. The Disable Time tdIsABLE before recovering normal operation can be easily programmed by means of the accurate thresholds of the logic inputs. It is affected whether by $\mathrm{C}_{E N}$ and $\mathrm{R}_{E N}$ values and its magnitude is reported in Figure 22. The Delay Time $\mathrm{t}_{\mathrm{DELAY}}$ before turning off the bridge when an overcurrent has been detected depends only by C_{EN} value. Its magnitude is reported in Figure 23
$C_{E N}$ is also used for providing immunity to pin EN against fast transient noises. Therefore the value of C_{EN} should be chosen as big as possible according to the maximum tolerable Delay Time and the REN value should be chosen according to the desired Disable Time.
The resistor $R_{E N}$ should be chosen in the range from $2.2 \mathrm{~K} \Omega$ to $180 \mathrm{~K} \Omega$. Recommended values for R_{EN} and C_{EN} are respectively $100 \mathrm{~K} \Omega$ and 5.6 nF that allow obtaining $200 \mu \mathrm{~s}$ Disable Time.

Figure 21. Overcurrent Protection Waveforms

Figure 22. $t_{\text {DISABLE }}$ versus C_{EN} and R_{EN}.
(

Figure 23. tDelay versus C_{EN}.

4 APPLICATION INFORMATION

A typical application using L6229 is shown in Figure 24. Typical component values for the application are shown in Table 9. A high quality ceramic capacitor $\left(\mathrm{C}_{2}\right)$ in the range of 100 nF to 200 nF should be placed between the power pins VS_{A} and VS_{B} and ground near the L 6229 to improve the high frequency filtering on the power supply and reduce high frequency transients generated by the switching. The capacitor (C_{EN}) connected from the EN input to ground sets the shut down time when an over current is detected (see Overcurrent Protection). The two current sensing inputs (SENSE ${ }_{A}$ and SENSE $_{B}$) should be connected to the sensing resistor RSENSE with a trace length as short as possible in the layout. The sense resistor should be non-inductive resistor to minimize the di/ dt transients across the resistor. To increase noise immunity, unused logic pins are best connected to 5 V (High Logic Level) or GND (Low Logic Level) (see pin description). It is recommended to keep Power Ground and Signal Ground separated on PCB.

Table 9. Component Values for Typical Application.

C_{1}	$100 \mu \mathrm{~F}$
C_{2}	100 nF
C_{3}	220 nF
$\mathrm{C}_{\text {BOOT }}$	220 nF
$\mathrm{C}_{\text {OFF }}$	1 nF
$\mathrm{C}_{\text {PUL }}$	10 nF
$\mathrm{C}_{\text {REF } 1}$	33 nF
$\mathrm{C}_{\text {REF2 }}$	100 nF
$\mathrm{C}_{\text {EN }}$	5.6 nF
$\mathrm{C}_{\text {P }}$	10 nF
D_{1}	1 N 4148
D_{2}	1 N 4148

R_{1}	$5 \mathrm{~K} 6 \Omega$
R_{2}	$1 \mathrm{~K} 8 \Omega$
R_{3}	$4 \mathrm{~K} 7 \Omega$
R_{4}	$1 \mathrm{M} \Omega$
R_{DD}	$1 \mathrm{~K} \Omega$
R_{EN}	$100 \mathrm{~K} \Omega$
R_{P}	100Ω
$\mathrm{R}_{\mathrm{SENSE}}$	0.6Ω
$\mathrm{R}_{\mathrm{OFF}}$	$33 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{PUL}}$	$47 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{H} 1}, \mathrm{R}_{\mathrm{H} 2}, \mathrm{R}_{\mathrm{H} 3}$	$10 \mathrm{~K} \Omega$

Figure 24. Typical Application

4.1 OUTPUT CURRENT CAPABILITY AND IC POWER DISSIPATION

In Figure 25 is shown the approximate relation between the output current and the IC power dissipation using PWM current control.
For a given output current the power dissipated by the IC can be easily evaluated, in order to establish which package should be used and how large must be the on-board copper dissipating area to guarantee a safe operating junction temperature ($125^{\circ} \mathrm{C}$ maximum).

Figure 25. IC Power Dissipation versus Output Power.

4.2 THERMAL MANAGEMENT

In most applications the power dissipation in the IC is the main factor that sets the maximum current that can be delivered by the device in a safe operating condition. Selecting the appropriate package and heatsinking configuration for the application is required to maintain the IC within the allowed operating temperature range for the application. Figures 26, 27 and 28 show the Junction-to-Ambient Thermal Resistance values for the PowerSO36, PowerDIP24 and SO24 packages.
For instance, using a PowerSO package with copper slug soldered on a 1.5 mm copper thickness FR4 board with $6 \mathrm{~cm}^{2}$ dissipating footprint (copper thickness of $35 \mu \mathrm{~m}$), the $\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{amb})}$ is about $35^{\circ} \mathrm{C} / \mathrm{W}$. Figure 29 shows mounting methods for this package. Using a multi-layer board with vias to a ground plane, thermal impedance can be reduced down to $15^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 26. PowerSO36 Junction-Ambient thermal resistance versus on-board copper area.

Figure 27. PowerDIP24 Junction-Ambient thermal resistance versus on-board copper area.

Figure 28. SO24 Junction-Ambient thermal resistance versus on-board copper area.

Figure 29. Mounting the PowerSO Package.

Figure 30. PowerSO36 Mechanical Data \& Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	3.25		3.5	0.128		0.138
A2			3.3			0.13
A4	0.8		1	0.031		0.039
A5		0.2			0.008	
a1	0		0.075	0		0.003
b	0.22		0.38	0.008		0.015
c	0.23		0.32	0.009		0.012
D	15.8		16	0.622		0.630
D1	9.4		9.8	0.37		0.38
D2		1			0.039	
E	13.9		14.5	0.547		0.57
E1	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
E4	2.9		3.2	0.114		1.259
e		0.65			0.026	
e3		11.05			0.435	
G	0		0.075	0		0.003
H	15.5		15.9	0.61		0.625
h			1.1			0.043
L	0.8		1.1	0.031		0.043
N			$10^{\circ}(m a x)$			
s			$8{ }^{\circ}(\max)$			

Note: "D and E1" do not include mold flash or protusions.

- Mold flash or protusions shall not exceed $0.15 \mathrm{~mm}(0.006$ ")
- Critical dimensions are "a3", "E" and "G".

Figure 31. PDIP-24 Mechanical Data \& Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			4.320			0.170
A1	0.380			0.015		
A2		3.300			0.130	
B	0.410	0.460	0.510	0.016	0.018	0.020
B1	1.400	1.520	1.650	0.055	0.060	0.065
c	0.200	0.250	0.300	0.008	0.010	0.012
D	31.62	31.75	31.88	1.245	1.250	1.255
E	7.620		8.260	0.300		0.325
e		2.54			0.100	
E1	6.350	6.600	6.860	0.250	0.260	0.270
e1		7.620			0.300	
L	3.180		3.430	0.125		0.135
M			$0 \circ$ min, 15° max.			

OUTLINE AND
MECHANICAL DATA

Figure 32. SO24 Mechanical Data \& Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
B	0.33		0.51	0.013		0.200
C	0.23		0.32	0.009		0.013
$\mathrm{D}^{(1)}$	15.20		15.60	0.598		0.614
E	7.40		7.60	0.291		0.299
e		1.27			0.050	
H	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.40		1.27	0.016		0.050
k	0° (min.), 8° (max.)					
ddd			0.10			0.004
(1) "D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15 mm per side.						

OUTLINE AND
MECHANICAL DATA

Weight: 0.60 gr

SO24

SEATING
PLANE

Table 10. Revision History

Date	Revision	Description of Changes
September 2003	1	First Issue
January 2004	2	Migration from ST-Press dms to EDOCS.
October 2004	3	Updated the style graphic form.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

