
Voltage Transducer LV 100-150

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 150 V$

Electrical data

\mathbf{V}_{PN}	Primary nominal r.m.s. voltage		150		V
V _P	Primary voltage, measuring range		0 ± 2	25	V
I _{PN}	Primary nominal r.m.s. current		66.67		mΑ
\mathbf{R}_{M}	Measuring resistance		\mathbf{R}_{Mmin}	R_{Mmax}	
	with ± 15 V	@ ± 150 V _{max}	0	170	Ω
		@ ± 225 V max	0	90	Ω
I _{sn}	Secondary nominal r.m.s. current		50		mΑ
I _{sn} K _n	Conversion ratio		150 V / 50 mA		
V _C	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		10 + I _s	i	mΑ
Λ ^q	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV

Accuracy - Dynamic performance data

X _G e _L	Overall Accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.7 < 0.1		% %
\mathbf{I}_{o} \mathbf{I}_{oT} \mathbf{t}_{r}	Offset current @ $\mathbf{I}_{\mathrm{P}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O} Response time @ 90 % of \mathbf{V}_{PN}	0°C + 70°C	Typ ± 0.2	Max ± 0.2 ± 0.3	mΑ mΑ μs

General data

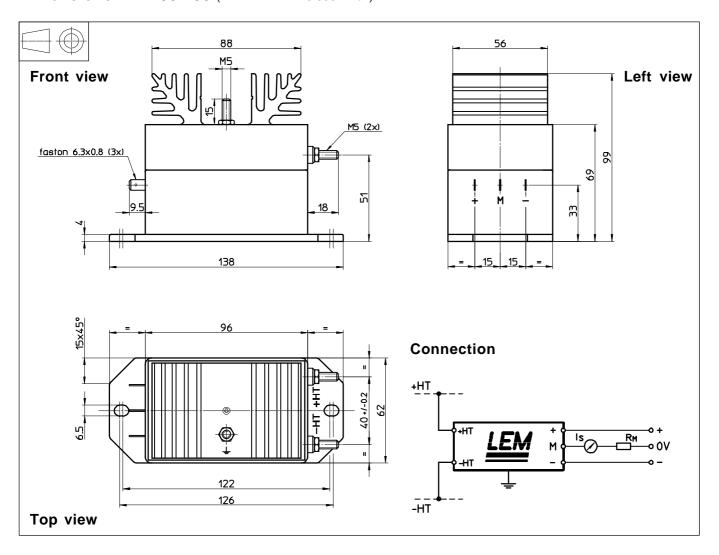
T_A	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	1500 : 2000	
Р	Total primary power loss	10	W
$R_{_1}$	Primary resistance @ $T_A = 25^{\circ}C$	2.25	$k\Omega$
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 70°C	60	Ω
m	Mass	850	g
	Standards	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated into the housing.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

030224/2

Dimensions LV 100-150 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max

- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max
- ± 0.3 mm
 2 holes Ø 6.5 mm
 M6 steel screws
 5 Nm or 3.69 Lb Ft.
 M5 threaded studs
 Faston 6.3 x 0.8 mm
 M5 threaded stud
 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \bullet $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.