мисм 2W C/X-Band Power Amplifier

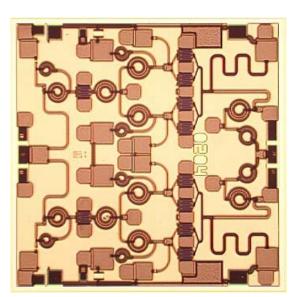
4.5-9.0 GHz

Preliminary Information

Features

- ◆ 4.5 to 9.0 GHz Operation
- 2 Watt Saturated Output Power Level
- ♦ Variable Drain Voltage (4-10V) Operation
- ◆ Self-Aligned MSAG® MESFET Process

Primary Applications


- Multiple Band Point-to-Point Radio
- SatCom
- ♦ ISM Band

Description

The MAAPGM0021-Die is a 2-stage 2 W power amplifier with on-chip bias networks. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Each device is 100% RF tested on wafer to ensure performance compliance. The part is fabricated using M/A-COM's repeatable, high performance and highly reliable GaAs Multifunction Self-Aligned Gate (MSAG®) MESFET Process. This process provides polyimide scratch protection.

4.5-9.0 GHz GaAs MMIC Amplifier

Electrical Characteristics: $T_B = 40^{\circ}C^1$, $Z_0 = 50\Omega$, $V_{DD} = 8V$, $V_{GG} = -2V$, $P_{in} = 18$ dBm

Parameter	Symbol	Typical	Units	
Bandwidth	f	4.5-9.0	GHz	
Output Power	POUT	33	dBm	
Power Added Efficiency	PAE	30	%	
1-dB Compression Point	P1dB	31	dBm	
Small Signal Gain	G	17	dB	
Input VSWR	VSWR	1.7:1		
Gate Current	IGG	< 2	mA	
Drain Current	IDD	< 750	mA	
Output Third Order Intercept	ОТОІ	41	dBm	
Noise Figure	NF	9	dB	
3 rd Order Intermodulation Distortion Single Carrier Level = 23 dBm	IM3	31	dBc	
5 th Order Intermodulation Distortion Single Carrier Level = 23 dBm	IM5	41	dBc	

Maximum Operating Conditions ¹

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	23.0	dBm
Drain Supply Voltage	V_{DD}	+12.0	V
Gate Supply Voltage	V_{GG}	-3.0	V
Quiescent Drain Current (No RF)	I _{DQ}	950	mA
Quiescent DC Power Dissipated (No RF)	P _{DISS}	6.3	W
Junction Temperature	T _j	180	°C
Storage Temperature	T _{STG}	-55 to +150	°C

^{1.} Operation outside of these ranges may reduce product reliability. Operation at other than the typical values may result in performance outside the guaranteed limits.

Recommended Operating Conditions

Characteristic	Symbol	Min	Тур	Max	Unit
Drain Voltage	V_{DD}	4.0	8.0	10.0	V
Gate Voltage	V_{GG}	-2.3	-2.0	-1.5	V
Input Power	P _{IN}		18.0	21.0	dBm
Junction Temperature	TJ			150	°C
Thermal Resistance	Θ_{JC}		12.7°	150	°C/W
MMIC Base Temperature	T _B			Note 2	°C

^{2.} Maximum MMIC Base Temperature = 150°C - $\Theta_{JC}^* V_{DD} * I_{DQ}$

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply V_{GG} = -2 V, V_{DD} = 0 V.
- 2. Ramp V_{DD} to desired voltage, typically 8 V.
- 3. Adjust V_{GG} to set I_{DQ} , (approximately @ -2 V).
- 4. Set RF input.
- 5. Power down sequence in reverse. Turn V_{GG} off last.

Specifications subject to change without notice.

Customer Service: Tel. (888)-563-3949

Email: macom_adbu_ics@tycoelectronics.com

■ North America: Tel. (800) 366-2266

■ Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

■ Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

2W C/X-Band Power Amplifier

MAAPGM0021-DIE

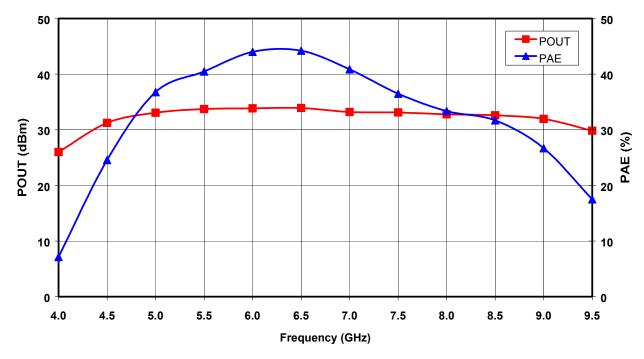


Figure 1. Output Power and Power Added Efficiency vs. Frequency at V_{DD} = 8V and $P_{in} = 18 dBm$.

Figure 2. Saturated Output Power and Power Added Efficiency vs. Drain Voltage at fo = 7.5 GHz.

Specifications subject to change without notice.

Customer Service: Tel. (888)-563-3949

Email: macom_adbu_ics@tycoelectronics.com

■ North America: Tel. (800) 366-2266

■ Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

■ Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

2W C/X-Band Power Amplifier

MAAPGM0021-DIE

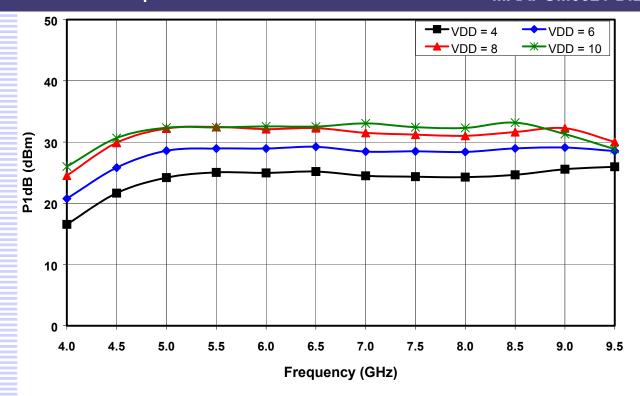


Figure 3. 1dB Compression Point vs. Drain Voltage

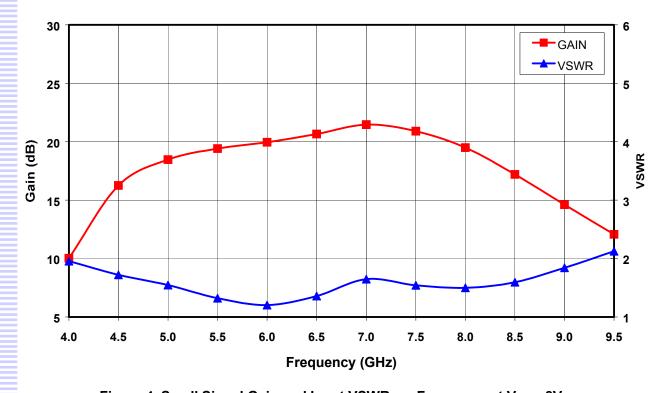


Figure 4. Small Signal Gain and Input VSWR vs. Frequency at $V_{DD} = 8V$.

Specifications subject to change without notice.

Customer Service: Tel. (888)-563-3949

Email: macom_adbu_ics@tycoelectronics.com

■ North America: Tel. (800) 366-2266

■ Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

■ Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

MAAPGM0021-DIE

Mechanical Information

Chip Size: 2.98 x 2.98 x 0.075 mm (117 x 117 x 3 mils)

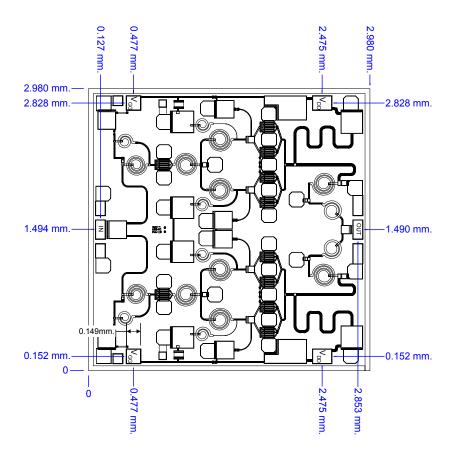
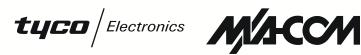


Figure 5. Die Layout

Bond Pad Dimensions

Pad	Size (μm)	Size (mils)
RF In and Out	100 x 200	4 x 8
DC Drain Supply Voltage VDD	200 x 150	8 x 6
DC Gate Supply Voltage VGG	150 x 150	6 x 6

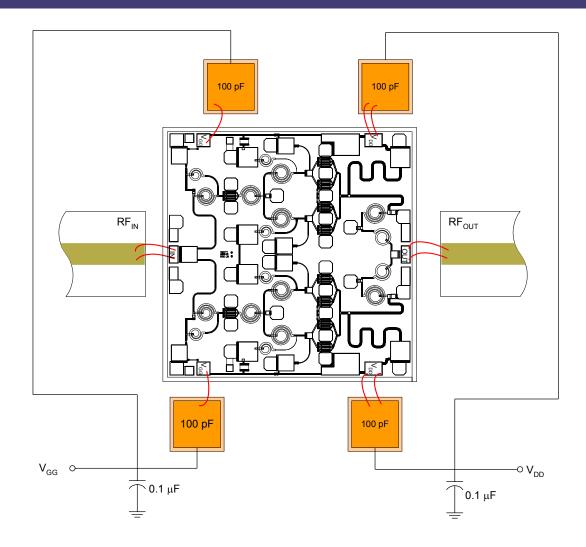
Specifications subject to change without notice.


Customer Service: Tel. (888)-563-3949

Email: macom_adbu_ics@tycoelectronics.com

■ North America: Tel. (800) 366-2266

■ Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298


■ Europe: Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

2W C/X-Band Power Amplifier

MAAPGM0021-DIE

Figure 6. Recommended bonding diagram for pedestal mount. Support circuitry typical of MMIC characterization fixture for CW testing.

Assembly Instructions:

Die attach: Use AuSn (80/20) 1-2 mil. preform solder. Limit time @ 300 °C to less than 5 minutes.

Wirebonding: Bond @ 160 °C using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

Specifications subject to change without notice.

Customer Service: Tel. (888)-563-3949

Email: macom_adbu_ics@tycoelectronics.com

■ North America: Tel. (800) 366-2266

■ **Asia/Pacific:** Tel.+81-44-844-8296, Fax +81-44-844-8298 ■ **Europe:** Tel. +44 (1908) 574 200, Fax+44 (1908) 574 300

