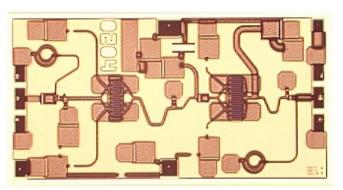


MAAPGM0037-DIE 903241 — Preliminary Information

Features


- ◆ 1.0 Watt Saturated Output Power Level
- ♦ Variable Drain Voltage (4-10V) Operation
- ◆ MSAG™ Process

Description

The MAAPGM0037-Die is a 2-stage 1.0 W power amplifier with onchip bias networks. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Fabricated using M/A-COM's repeatable, high performance and highly reliable GaAs Multifunction Self-Aligned Gate (MSAG™) Process, each device is 100% RF tested on wafer to ensure performance compliance.

M/A-COM's MSAG[™] process features robust silicon-like manufacturing processes, planar processing of ion implanted transistors, multiple implant capability enabling power, low-noise, switch and digital FETs on a single chip, and polyimide scratch protection for ease of use with automated manufacturing processes. The use of refractory metals and the absence of platinum in the gate metal formulation prevents hydrogen poisoning when employed in hermetic packaging.

Primary Applications

- Instrumentation
- Test Equipment
- **◆ Electronic Warfare**

Electrical Characteristics: $T_B = 40^{\circ}C^1$, $Z_0 = 50\Omega$, $V_{DD} = 8V$, $V_{GG} = -1.8V$, $P_{in} = 20$ dBm

Parameter	Symbol	Typical	Units
Bandwidth	f	6.5-12.5	GHz
Output Power	P _{OUT}	30	dBm
Power Added Efficiency	PAE	27	%
1-dB Compression Point	P1dB	29	dBm
Small Signal Gain	G	13	dB
Input VSWR	VSWR	3:1	
Output VSWR	VSWR	2:1	
Gate Current	I _{GG}	< 2	mA
Drain Current	I _{DD}	< 500	mA
Output Third Order Intercept	TOI	37	dBm
Noise Figure	NF	8	dB
3 rd Order Intermodulation Distortion Single Carrier Level = 21 dBm	IM3	30	dBc
5 th Order Intermodulation Distortion Single Carrier Level = 21 dBm	IM5	43	dBc

1. T_B = MMIC Base Temperature

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0037-DIE 903241 — Preliminary Information

Maximum Operating Conditions²

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	25.0	dBm
Drain Supply Voltage	V_{DD}	+12.0	V
Gate Supply Voltage	V_{GG}	-3.0	V
Quiescent Drain Current (No RF)	I _{DQ}	470	mA
Quiescent DC Power Dissipated (No RF)	P _{DISS}	3.2	W
Junction Temperature	TJ	180	°C
Storage Temperature	T _{STG}	-55 to +150	°C

^{2.} Operation outside of these ranges may reduce product reliability. Operation at other than the typical values may result in performance outside the guaranteed limits.

Recommended Operating Conditions

Characteristic	Symbol	Min	Тур	Max	Unit
Drain Voltage	V_{DD}	4.0	8.0	10.0	V
Gate Voltage	V_{GG}	-2.4	-1.8	-1.5	V
Input Power	P _{IN}		20.0	23.0	dBm
Junction Temperature	TJ			150	°C
MMIC Base Temperature	T _B			Note 3	°C

3. Maximum MMIC Base Temperature = 150°C - 25.1°C/W * VDD * IDQ

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply $V_{GG} = -1.8 \text{ V}$, $V_{DD} = 0 \text{ V}$.
- 2. Ramp V_{DD} to desired voltage, typically 8.0 V.
- 3. Adjust V_{GG} to set I_{DQ} , (approximately @ -1.8 V).
- 4. Set RF input.
- 5. Power down sequence in reverse. Turn gate voltage off last.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0037-DIE 903241 — Preliminary Information

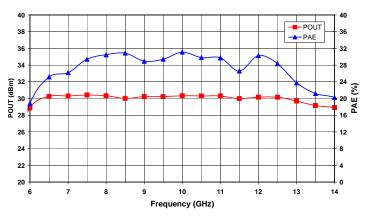


Figure 1. Output Power and Power Added Efficiency vs. Frequency at V_{DD} = 8V and P_{in} = 20 dBm.

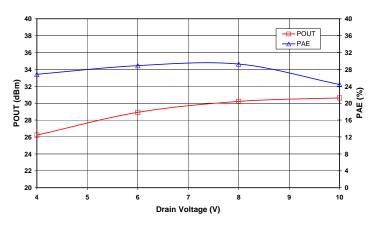


Figure 2. Saturated Output Power and Power Added Efficiency vs. Drain Voltage at f_0 = 9.5 GHz.

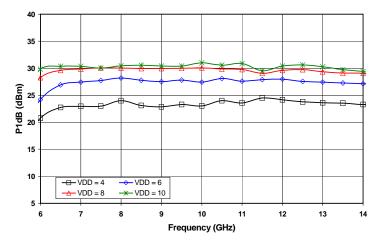


Figure 3. 1dB Compression Point vs. Drain Voltage

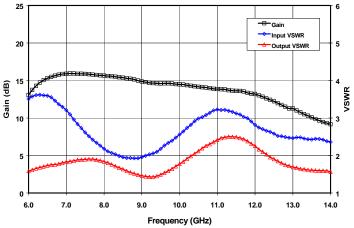


Figure 4. Small Signal Gain and VSWR vs. Frequency at VDD = 8V.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0037-DIE 903241 — Preliminary Information

Mechanical Information

Chip Size: 3.00 x 1.60 x 0.075 mm (118 x 63 x 3 mils)

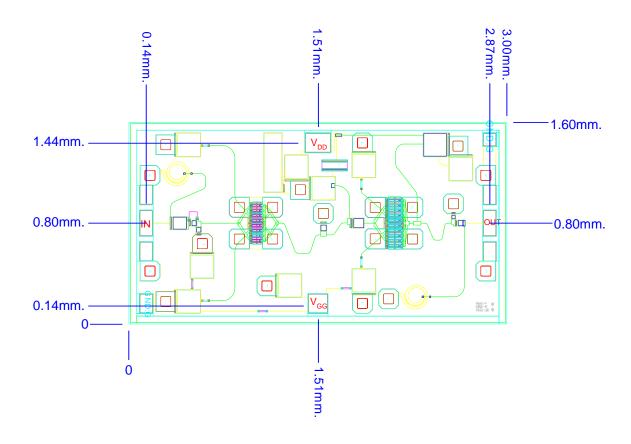


Figure 5. Die Layout

Bond Pad Dimensions

Pad	Size (μm)	Size (mils)
RF: IN, OUT	100 x 200	4 x 8
DC: V _{DD}	200 x 150	8 x 6
DC: V _{GG}	150 x 150	6 x 6

information.

⁴

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0037-DIE 903241 — Preliminary Information

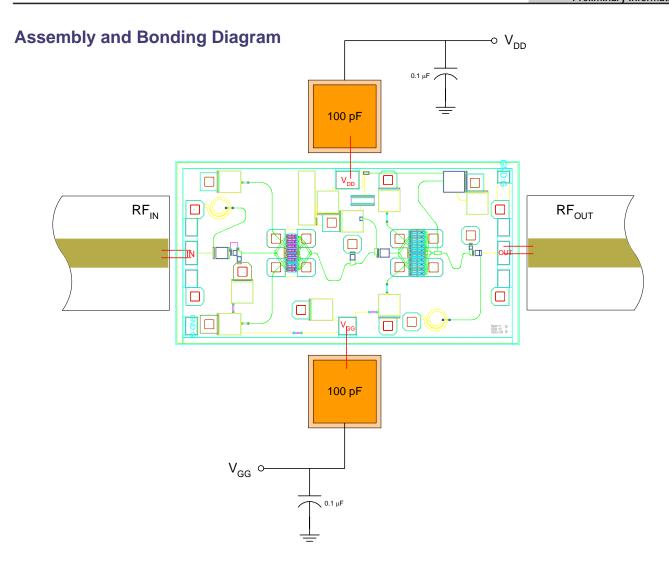


Figure 6. Recommended bonding diagram for pedestal mount.

Assembly Instructions:

Die attach: Use AuSn (80/20) 1 mil. preform solder. Limit time @ 300 °C to less than 5 minutes.

Wirebonding: Bond @ 160 °C using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298